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This work introduces a class of 1D spatial-frequency-modulated structures with transmittance T(x), in which the
period changes along the x axis so that the corresponding spatial frequency f (x) sinusoidally alternates between
two values. It is shown that T(x) generally is an almost-periodic function and has an impulsive spatial spectrum.
However, we find the condition under which T(x) is a periodic function and its spatial spectrum form a lattice of
impulses. When the periodicity condition is fulfilled, we call these structures as 1D spatially chirped periodic struc-
tures. These structures are characterized by two natural numbers, named as nc and nav, and a real parameter named
as frequency modulation strength (FMS). As an important special case, we define a 1D spatially chirped amplitude
sinusoidal grating (SCASG) based on the transmission function of a conventional amplitude sinusoidal grating,
in which the phase of conventional amplitude sinusoidal grating is replaced by desired chirped phase. Then the
spatial spectrum of a 1D SCASG is investigated in detail, and it is shown that the spatial spectrum can be managed
by changing the value of FMS. In other words, the grating’s spectrum can be manipulated by adjusting the value
of FMS. This feature might find applications in optical sharing of the incident power among different diffraction
orders. Moreover, near-field diffraction from 1D SCASGs is studied by using the so-called angular (spatial) spec-
trum method, and Talbot distances for these gratings are determined and verified experimentally. It is shown that
the intensity profiles at quartet- and octant-Talbot distances strongly depend on the values of the parameters nc

and nav. In comparison with the conventional gratings, we see some new and interesting aspects in the diffraction
from 1D SCASGs. For instance, unlike the conventional gratings, in some propagation distances, the diffraction
patterns possess sharp and smooth intensity bars at which the intensity is several times of the incident light beam’s
intensity. It is shown that the maximum intensity of these bright bars over the diffraction patterns depends on the
characteristic parameters of the grating, including nc, nav, and FMS of the grating. These intensity bars might find
applications for trapping and aggregation of particles along straight lines. ©2022Optica PublishingGroup

https://doi.org/10.1364/JOSAA.471764

1. INTRODUCTION

In optics, periodic structures play an essential role in many
applications. Self-imaging, also known as the Talbot effect, is
a well-known phenomenon in the diffraction of a plane wave
from a periodic structure. For more than half a century, the
physics of diffraction from 1D conventional periodic structures
has attracted much attention, and many studies have allocated
it [1–15]. For the first time, the Talbot effect was observed
for the spatially periodic structures [16], and consequently
it was studied on wavefronts having periodic structure [17].
Continuing, the Talbot effect has been generalized to periodic
functions of other variables, including time [18,19], frequency
[20], and angular frequency [21]. The Talbot effect in polar
coordinates has been also studied [22,23]. Diffraction from

periodic structures has been used for characterization of optical
vortices [24], generation of optical lattices [25–29], and vortex
beam multiplication [30–34]. Diffraction from azimuthally
periodic (radial) structures has been used for the generation of
some structured beams [35–38] and measurement of the topo-
logical charge of vortex beams [39]. In addition, recently some
other works on the Talbot effect have been studied [40–45].

Consider a transparent sheet having harmonic transmittance
in which its period (and spatial frequency) varies continuously
and slowly with the position. Such a structure is considered
as a spatial-frequency-modulated structure [46]. The most
well-known spatial-frequency-modulated structures are Fresnel
zone plate and 1D zone plate. The phase of a Fresnel zone plate
is proportional with r 2; therefore, spatial frequency along the
radial coordinate is proportional with r , where r is the radial
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coordinate. Moreover, the phase and spatial frequency of a
1D zone plate are proportional with x 2 and x , respectively.
Recently a class of structures, named as quadratic curved-line
(parabolic-line) gratings, has been introduced in which the
phase is proportional with (x − γ y 2), where (x , y ) indicates
Cartesian coordinates [47]. Therefore, spatial frequency along
the x axis is constant, like a conventional grating, and along the
y axis it is proportional with y , similar to a 1D zone plate. This
kind of grating has been used as a simple and efficient tool for
characterization of optical vortices [47–49].

In this work, we introduce a new class of spatial-frequency-
modulated structures, named as spatially chirped structures,
in which the spatial frequency has a sinusoidal functionality
and alternates between two values, say f1 and f2. It is shown
that the transmittance of these structures is an almost-periodic
function in the general case. Nevertheless, we find the condition
under which the transmittance is a periodic function. Under
the obtained condition, the spatially chirped periodic structure
can be fully determined with two natural numbers (nc and nav)
and a real parameter named as FMS, which is proportional with
f1 − f2. Based on the transmission function of a conventional
amplitude sinusoidal grating, a 1D SCASG is defined, and its
spatial spectrum is investigated in detail. It is shown that the
spatial spectrum of 1D SCASGs can be managed by adjusting
the value of FMS. Furthermore, near-field diffraction from
1D SCASGs is investigated, and it is shown that the intensity
profiles at the fractional Talbot distances, namely quartet- and
octant-Talbot distances, strongly depend on the values of nc

and nav. It is also shown that the diffraction patterns at some
distances from the grating include bright bars having sharp and
smooth profiles where the intensity is higher than the incident
beam’s intensity. By adjusting the value of FMS, the intensity
of these bright bars can be maximized and reaches to several
times of the intensity of the incident beam. This feature might
find applications in trapping and aggregation of particles along
straight lines.

It is worth noting that, in recent years, both temporally
chirped light fields and spatially chirped structures have been
used for various applications in science and technology. Here,
we review some applications. The filter response of non-
uniform, almost-periodic structures, such as corrugated optical
waveguides, has been theoretically predicted in [50]. The use of
a linearly chirped Bragg grating filter for dispersion cancellation
has been proposed in [51]. On the other hand, a chirped-
quasi-periodic structure has been proposed for both multiple
quasi-phase-matching and multiple bandwidths control [52].
In another work, an optical superlattice with a chirped dual
periodic structure has been designed and used for generation of
tunable vortex beams in the blue spectral range [53]. Moreover,
by using a gradually changing period grating, a method for
measuring orbital angular momentum states of light beams
has been reported [54]. In laser manufacturing, the spatially
chirped gratings have been used to improve the optical bista-
bility on reflection from distributed feedback semiconductor
laser amplifiers [55] and to enhance the wavelength tunability
in the distributed feedback lasers [56]. Finally, we address in
another work that a chirped moiré fiber Bragg grating has been
used for measuring the magnitude, position, and footprint of a
transverse load [57].

Because of the existence of an intense analogy between time
domain and spatial domain phenomena in optical sciences,
such as the temporal and spatial Talbot effect [58–61], and
considering a wide range of applications of some of the chirped
structures that we have reviewed, we think that the spatially
chirped periodic structures and their Talbot effect might find
applications in the spatial domain.

2. 1D SPATIALLY CHIRPED STRUCTURES

As the simplest form of 1D periodic structures, a 1D amplitude
sinusoidal grating is indicated by the following transmission
function [62,63]:

T0(x )= cos2

(
ϕ0(x )

2

)
=

1

2
[1+ cos (ϕ0(x ))] , (1)

where ϕ0(x )= 2π
p0

x = 2π f0x denotes the phase over the grat-

ing in which p0 and f0 =
1
p0

are the fundamental period and
frequency, respectively. The lateral extension of the grating is
considered infinite. Now let us define a grating with a spatially
variable period, for which the period alternates between two
values p1 and p2; therefore, the spatial frequency alternates
between two values f1 =

1
p1

and f2 =
1
p2

. Hereafter, we sup-
pose that p1 < p2 and, thus, f1 > f2. As at different positions
the spatial frequency changes between f1 and f2, we consider
f (x ) as the spatial frequency envelope. It is noteworthy that
frequency modulation in the time domain is fully described for
signals [64,65]. Here, we consider the sinusoidal form for f (x )
changing between f1 and f2 with a period pc, and we have

f (x )= fav + δ f cos(2π fcx ), (2)

where fc =
1
pc

can be called as the chirping frequency, fav is the
average frequency given by

fav =
f1 + f2

2
=

1

2

(
1

p1
+

1

p2

)
, (3)

and δ f is frequency modulation amplitude, defined by

δ f =
f1 − f2

2
=

1

2

(
1

p1
−

1

p2

)
. (4)

Now the average period of the grating can be defined by the
inverse of the average frequency:

pav =
1

fav
=

2p1 p2

p1 + p2
. (5)

Considering Eq. (3), we have f2 < fav < f1 and, therefore,
p1 < pav < p2. In this work, we assume that the chirping period
is larger than or equal to the average period of the grating,
namely pc ≥ pav. The phase of the chirped grating ϕ(x ) can be
obtained by f (x )= 1

2π
dϕ(x )

d x , or equally by

ϕ(x )= 2π
∫

f (x )dx . (6)

Substituting Eq. (2) into Eq. (6), we have

ϕ(x )= 2π favx + k sin(2π fcx ), (7)
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where k = δ f
fc

, and we call it frequency modulation strength
(FMS). As is apparent, the chirping phase ϕ(x ) is characterized
by three parameters: fav, fc, and δ f . The extremum values
of δ f can be obtained by considering Eqs. (3) and (4). The
minimum possible value is δ f = 0, which means that there is
not frequency modulation ( f1 = f2 and equivalently p1 = p2).
The maximum possible value is δ f = fav = f1/2, which
means f2 = 0 and equivalently p2 =∞. Therefore, we have
0≤ δ f ≤ fav and equivalently

0≤ k ≤
fav

fc
. (8)

Equation (8) determines the variation interval of the FMS.
Indeed, Eq. (7) introduces the chirping phase, which can be

used for defining the transmission function of a 1D spatially
chirped structure, T(x ), as follows:

T(x )= Pe [ϕ(x )] , (9)

where Pe(u) is an arbitrary periodic function with fundamental
period 2π so that Pe(u + 2nπ)= Pe(u) for any integer n.

3. 1D SPATIALLY CHIRPED PERIODIC
STRUCTURES

Now let us consider two questions about the transmission func-
tion of a 1D spatially chirped structure: When is T(x ) a periodic
function? If it is, what is the period? Assuming that T(x ) is a
periodic function with a period p , namely T(x + p)= T(x ),
we have

ϕ(x + p)= ϕ(x )+ 2nπ, (10)

where n is an integer. Thus, if Eq. (10) is satisfied, T(x ) is peri-
odic function with a period p . Using Eq. (7), we get

ϕ(x + p)= 2π fav(x + p)+ k sin (2π fc (x + p)) . (11)

If p is an integer multiple of pc, say p = nc pc, and considering
pc =

1
fc

, we have p fc = nc and, therefore, sin(2π fc(x + p))=
sin(2π fcx ). In this case, Eq. (11) reduces to

ϕ(x + p)= ϕ(x )+ 2π fav p, (12)

where we used the definition of ϕ(x ), namely Eq. (7).
Comparing Eqs. (10) and (12), one can deduce that Eq. (10)
is satisfied if fav p is an integer number, say fav p = nav, and
considering fav =

1
pav

, p is an integer multiple of pav, say
p = nav pav. The obtained two conditions: p = nav pav and
p = nc pc, can be merged as nc pc = nav pav, which can be
rewritten as follows:

fav

fc
=

pc

pav
=

nav

nc
, (13)

where nc and nav are two coprime natural numbers.
Equation (13) means that pc and pav are commensurable,
i.e., pc

pav
is a rational number. In summary, T(x ) is a periodic

function if pc and pav are commensurable; namely, there
exist two coprime natural numbers nc and nav such that
nc pc = nav pav. In this case, the fundamental period of T(x )

is obtained as p = nc pc = pavnav, and inverting each side,
the fundamental frequency is also obtained as f = fc

nc
=

fav
nav

.
It should be mentioned that, as pc ≥ pav, we have nav ≥ nc.
Moreover, by substituting fav

fc
from Eq. (13) in Eq. (8), we get

0≤ k ≤
nav

nc
. (14)

4. 1D SPATIALLY CHIRPED AMPLITUDE
SINUSOIDAL GRATING

As a simple and important example of 1D spatially chirped
structures, we define the 1D spatially chirped amplitude sinus-
oidal grating (SCASG) by considering Pe(u)= cos2( u

2 ). In
other words, the transmission function of this grating can be
obtained by replacingϕ0(x )byϕ(x ) in Eq. (1) as follows:

T(x )= cos2

(
ϕ(x )

2

)
=

1

2
[1+ cos (ϕ(x ))] , (15)

whereϕ(x ) is the chirping phase defined by Eq. (7).
To clarify the matter, we investigate some practical examples.

As the first example, let us consider a grating with p1 = 0.1 mm,
p2 = 0.3 mm. Substituting these values in Eq. (5), we get
pav = 0.15 mm. Now considering different values for nc and nav

and substituting in Eq. (13), we get different values for pc. Using
these parameters, we construct different 1D SCASGs. In Fig. 1,
the transmission functions and the corresponding frequency
envelopes of the gratings having nc = 1 and nc = 2 for different
values of nav are illustrated. As is seen, the number of frequency
envelopes and the number of transmission function peaks, in
each period, are equal to nc and nav, respectively.

As the second example, we consider a grating with
pav = 0.1 mm, pc = 0.4 mm (nav = 4, nc = 1), and differ-
ent values of k. Therefore, we construct 1D SCASGs having
different FMSs. In Fig. 2, the transmission functions and the
corresponding frequency envelopes of the gratings having
k = 0, 1, 2, 3, and 4 are illustrated (see Visualization 1).

A. Spatial Spectrum of a 1D SCASG

Now let us derive the spatial spectrum of a 1D SCASG. For this
purpose, first, we rewrite Eq. (15) in the following form:

T(x )=
1

2
+

1

4
[exp(iϕ(x ))+ exp(−iϕ(x ))]. (16)

Substituting ϕ(x ) from Eq. (7) in Eq. (16), and using the
Jacobi–Anger identity [66],

exp(iγ sin(x ))=
+∞∑

m=−∞

Jm(γ ) exp(imx ), (17)

we obtain

exp(iϕ(x ))=
+∞∑

m=−∞

Jm(k) exp(i2π fm x ), (18a)

exp(−iϕ(x ))=
+∞∑

m=−∞

Jm(k) exp(−i2π fm x ), (18b)

https://doi.org/10.6084/m9.figshare.21320460
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Fig. 1. Transmission and frequency envelope functions of 1D SCASGs, having p1 = 0.1 mm, p2 = 0.3 mm, and pav=0.15 mm with nc = 1 (first
column) and nc = 2 (second column) for different values of nav. All plots are depicted in an interval of [−p, p].

Fig. 2. First column, transmittance of 1D SCASGs having pav = 0.1 mm, pc = 0.4 mm, nav = 4, and nc = 1 with different values of FMS. Second
row, the corresponding transmission profiles (solid blue plots) and the frequency envelope functions (dashes red plots). All patterns are illustrated in
[−p, p] interval (see Visualization 1).

https://doi.org/10.6084/m9.figshare.21320460
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where fm = fav +m fc. Now by substituting Eq. (18) in
Eq. (16), we have

T(x )=
1

2
+

1

4

{
+∞∑

m=−∞

Jm(k)
[
e i2π fm x

+ e−i2π fm x ]} , (19)

or equally

T(x )=
1

2

{
1+

+∞∑
m=−∞

Jm(k) cos(2π fm x )

}
. (20)

Now it is easy to obtain the spatial spectrum of T(x ) by calculat-
ing the Fourier transform of Eq. (19), and the result is

T̃(ξ)=
1

2
δ(ξ)+

1

4

{
+∞∑

m=−∞

Jm(k)
[
δ(ξ − fm)+ δ(ξ + fm)

]}
,

(21)
where δ denotes the Dirac delta function. Comparing Eqs. (19)
and (21) with Eqs. (A4) and (A6), respectively, shows that
T(x ) is in general an almost-periodic function. As is apparent,
the spatial spectrum of the grating consists of a set of discrete
impulses that, in general, is not a 1D lattice. Therefore, in a gen-
eral case, T(x ) is an almost-periodic function (see Appendix A).
However, when Eq. (13) is satisfied, T(x ) is a periodic function
with a fundamental period of p = nc pc = nav pav and spatial
frequency of f = fc

nc
=

fav
nav

. In this case, Eq. (20) reduces to

T̃(ξ)=
1

4

{
2δ(ξ)+

+∞∑
m=−∞

Jm(k)[δ(ξ − l f )+ δ(ξ + l f )]

}
,

(22)
where l = nav +mnc are integer numbers. As is expected, in
this case, the spatial spectrum of the grating is a set of impulses,
and they form a 1D lattice [compare Eqs. (22) and (A3)].
Furthermore, comparing Eqs. (22) and (A3), the amplitude of
impulses can be obtained. First of all, let us obtain the amplitude
of the DC impulse. By setting l = 0, we get m =− nav

nc
. As nav

and nc are two coprime natural numbers and m is an integer, the
m =− nav

nc
equality is only possible if nc = 1. Therefore, A0, the

amplitude of the DC impulse, can be expressed as follows:

A0 =

{
1
2

[
1+ (−1)nav Jnav(k)

]
if nc = 1,

1
2 if nc > 1,

(23)

where we used J−m(k)= (−1)m Jm(k). Figsures 3(a) and 3(b)
show plots of different orders of the Bessel functions, and the
table in Fig. 3(c) shows the Bessel functions’ arguments in which
their values (first row) or the values of their first derivatives
(second row) reach zero. According to Eq. (23), only for the
case nc = 1, the amplitude of the DC impulse depends on k;
otherwise, it is constant. Using Eq. (14) when nc = 1, we have
0≤ k ≤ nav, and in this interval Jnav(k) is an ascending positive
function [see Fig. 3 (we verified this feature up to nav = 200
numerically)].

In this case, if nav is an even (odd) number, A0 is an ascending
(descending) function of k. In addition, when nav is an even
(odd) number, A0 is larger (smaller) than 1

2 .
The amplitude of the higher order impulses (l 6= 0) is

obtained using Eq. (22) and considering l = nav +mnc as
follows:

Fig. 3. (a) and (b) Plots of different orders of the Bessel functions,
and (c) the Bessel functions’ arguments in which their values (first row)
or the values of their first derivatives (second row) reach zero.

Table 1. Values of r and s Determining Amplitudes of
Different Order Impulses for a 1D SCASG Having nav = 3
and nc = 1

l ±1 ±2 ±3 ±4 ±5 ±6 ±7 ±8

r 2 −1 0 1 2 3 4 5
s 4 −5 6 7 8 −9 10 −11

Al =
Jr (k)+ J s (k)

4
, (24)

provided that r = l−nav
nc

and s =− l+nav
nc

are two integer num-
bers. If both r and s are not integer numbers, then the spectrum
does not include the l -order impulse. If only one of r or s , say
r , is an integer number, then Eq. (24) gets the following form:
Al =

Jr (k)
4 .

As a typical example, we consider a grating with nc = 1
and nav = 3, presented in the first column, third row of
Fig. 1. In this case, using Eq. (23), we obtain the amplitude
of the DC impulse as A0 =

1
2 (1− J3(k)). Setting l =±1

in l = 3+m, we get m =−2 and m =−4, and then the
amplitude of the first-order impulses can be obtained as
A±1 =

1
4 (J2(k)+ J4(k)), in which J−m(k)= (−1)m Jm(k) is

also used. Similarly, the amplitudes of the higher order impulses
can be obtained, and the results are shown in Table 1. By sub-
stituting the values of r and s from the table in Eq. (24), the
amplitudes of different order impulses can be determined.
In the use of values presented in Table 1, we always consider
J−m(k)= (−1)m Jm(k). For example, for the values presented
in the fifth column (l =±4, r = 1, s =−7 of the table) we have
A±4 =

1
4 (J1(k)+ J−7(k))= 1

4 (J1(k)− J7(k)).
As another typical example, we consider a grating with

nc = 2 and nav = 7, shown in the second column, third row
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Fig. 4. The amplitude of the impulses in the spectra of gratings is shown in the first and second columns of Fig. 1.

Table 2. Values of r and s Determining Amplitudes of
Different Order Impulses for a 1D SCASG Having nav = 7
and nc = 2

l ±1 ±3 ±5 ±7 ±9 ±11 ±13 ±15 ±17

r −3 2 −1 0 1 2 3 4 5
s 4 −5 6 −7 8 −9 10 −11 12

of Fig. 1. According to Eq. (23), the amplitude of the DC
impulse A0 =

1
2 , and according to Eq. (24), amplitudes of other

impulses are presented in Table 2. As is apparent, except for the
DC impulse, the spectrum includes only odd-order impulses.
This feature is established for the case nc = 2 generally.

In summary, according to Eq. (24), the amplitudes of the
impulses (except the DC impulse) in the gratings’ spectrum
are proportional to Jr (k)+ J s (k). Therefore, by considering
appropriate values for k, in which Jr (k)+ J s (k) is zero or
maximum, one can remove/maximize some impulses from the
spectrum of the grating. This fact might have some applications
in the manipulation of the grating spectrum.

In Fig. 4, the corresponding impulse combs of the gratings
shown in Fig. 1 are illustrated. As is expected, in the first column
(nc = 1), the amplitude of the DC impulse is larger (smaller)
than 1

2 for even (odd) values of nav, and in the second column
(nc = 2), the amplitude of the DC impulse is equal to 1

2 for all
values of nav. In the second column, we only have impulses with
odd orders (except the DC impulse). This feature can be easily
explained by l = nav +mnc. Another important feature is that,
by increasing the value of nav, the number of impulses with
considerable values of amplitude increases.

Figure 5 shows the corresponding impulse combs of the
gratings presented in Fig. 2. This figure shows the absolute
values of the impulses’ amplitudes. By increasing the FMS,
higher order Bessel functions participate in the spatial spec-
trum. Therefore, the number of impulses with considerable
amplitudes increases. The background Visualization 2 of Fig. 5
shows the evolution of transmission profile, frequency envelope

Fig. 5. Absolute values of impulses’ amplitudes for the spectra of the
gratings shown in Fig. 2 (see Visualization 2).

function, and spatial spectrum of a 1D SCASG under varia-
tion of FMS. As is apparent by increasing the value of k, the
width of the frequency spectrum increases. It is also seen that,
by changing the value of k, some impulses can be removed, or
some impulses can be locally maximized. This feature might
find some applications for intensity sharing among different
diffraction orders of the gratings. In other words, the spatial
spectrum of the grating can be managed by changing the values

https://doi.org/10.6084/m9.figshare.21320457
https://doi.org/10.6084/m9.figshare.21320457
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Fig. 6. First column, transmission and frequency envelope functions of the gratings with pav = 0.1 mm, nav = 7, and nc = 1 having different val-
ues of FMS. Second column, absolute values of impulses’ amplitudes for the spectra of the gratings presented in the first column (see Visualization 3).

of FMS. It is worth mentioning that, in another work, with the
aid of adjustable amplitude-phase hybrid gratings, intensity-
sharing management among diffraction orders was previously
proposed [67].

In Fig. 6, we consider a set of gratings with pav = 0.1 mm,
nav = 7, and nc = 1 having different values of FMS. According
to Eq. (14), the maximum possible value of k is 7. The transmis-
sion and frequency envelope functions are plotted in the first
column, and the corresponding impulse combs are illustrated in
the second column. Here again, by increasing k, the number of
impulses with considerable amplitudes increases.

In Fig. 7, a set of gratings with pav = 0.1 mm, nav = 7, and
nc = 2 having different values of FMS is considered. The maxi-
mum possible value of k is 3.5, according to Eq. (14). The
first column shows the transmission and frequency envelope
functions, and the second column illustrates the corresponding
impulse combs. Here also, the number of impulses with con-
siderable amplitudes increases by increasing the value of FMS.

Furthermore, comparing the first to fourth rows of Figs. 6 and
7 having the same values of k, we see that in each row the spatial
spectrum in Fig. 7 is wider than the spatial spectra in Fig. 6 (see
Visualization 3 and Visualization 4).

Figure 8, first column, illustrates the variation of ampli-
tudes of some impulses in the spectrum of a 1D SCASG
having nav = 3 and nc = 1, in terms of FMS. The second
column shows the impulse combs for three different values
of FMS. As nav is an odd number, the amplitude of the DC
impulse, A0, is a descending function of k, and its value is
always less than 1

2 . The amplitude of the third-order impulse
A±nav = A±3 (see first row) decreases by increasing k and
reaches to zero at k = 2.4115, then increases. According to
Table 1, A±3 =

1
4 (J0(k)+ J6(k)). As the value of J6(k) in

the interval of 0≤ k ≤ 3 is almost negligible (see Fig. 3), then
A±3 ≈

J0(k)
4 . To determine the accuracy of this approxima-

tion, compare the first zero of J0(k), k = 2.4048 with the

https://doi.org/10.6084/m9.figshare.21320454
https://doi.org/10.6084/m9.figshare.21320454
https://doi.org/10.6084/m9.figshare.21320451
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Fig. 7. First column, transmission and frequency envelope functions of the gratings with pav = 0.1 mm, nav = 7, and nc = 2 having different val-
ues of FMS. Second column, absolute values of impulses’ amplitudes for the spectra of the gratings presented in the first column (see Visualization 4).

Fig. 8. Variation of different impulse amplitudes of a 1D SCASG having nav = 3 and nc = 1, in terms of FMS (first column). Absolute values of
different impulse amplitudes of three gratings with different given values of FMS (second column); see Visualization 5.

root of A0, k = 2.4115. The amplitudes of the second- and
fourth-order impulses are A±2 =−

1
4 (J1(k)+ J5(k)) and

A±4 =
1
4 (J1(k)− J7(k)), respectively. As the values of J5(k)

and J7(k) in the interval of 0≤ k ≤ 3 are almost negligible

[see Fig. 3(b)], |A±2| ≈ |A±4| ≈
J1(k)

4 . Therefore, both |A±2|

and |A±4| reach their maximum values about k = 1.8412 [see
Fig. 3(c)]; the exact values for |A±2| and |A±4| are k = 1.8729
and k = 1.8403, respectively (see Visualization 5).

https://doi.org/10.6084/m9.figshare.21320451
https://doi.org/10.6084/m9.figshare.21320448
https://doi.org/10.6084/m9.figshare.21320448
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Fig. 9. Variation of different impulse amplitudes of a 1D SCASG having nav = 4 and nc = 1, in terms of k (first column). Sbsolute values of differ-
ent impulse amplitudes of four gratings with different given values of FMS (second column).

The first column in Fig. 9 illustrates the variation of different
impulse amplitudes of a 1D SCASG having nav = 4 and nc = 1,
in terms of k. The second column depicts the impulse combs
for four given values of FMS. As nav is an even number, the
amplitude of the DC impulse, A0, is an ascending function of
k, and its value is always more than 1

2 . According to Table 3 and
considering J8(k) in Fig. 3, the amplitude of the fourth-order
impulse is A±nav = A±4 =

1
4 (J0(k)+ J8(k))≈

J0(k)
4 . As is

seen in the first row of Fig. 9, |A±4| decreases by increasing k
and reaches to zero at k = 2.4049, which is very close to the
first zero of J0(k), k = 2.4048. The variations of the third- and
fifth-order impulses are similar. The amplitudes of the third-
and fifth-order impulses are A±3 =−

1
4 (J1(k)+ J7(k)) and

A±5 =
1
4 (J1(k)− J9(k)), respectively. As the values of J7(k)

and J9(k) in the interval of 0≤ k ≤ 4 are almost negligible
[see Fig. 3(b)], |A±3| ≈ |A±5| ≈

J1(k)
4 . Therefore, both |A±3|

and |A±5| reach their maximum values about k = 1.8412 [see
Fig. 3(c)]; the exact values for |A±3| and |A±5| are k = 1.8416
and k = 1.8416, respectively. In addition, the third- and
fifth-order impulses vanish at the vicinity of k = 3.8317,
first zero of J1(k). The exact values for |A±3| and |A±5| are
k = 3.8631 and k = 3.8319, respectively. In a similar way,
|A±2| ≈ |A±6| ≈

J2(k)
4 . Therefore, both the second and sixth

Table 3. Values of r and s Determining Amplitudes of
Different Order Impulses for a 1D SCASG Having nav = 4
and nc = 1

l ±1 ±2 ±3 ±4 ±5 ±6 ±7 ±8 ±9 ±10

r −3 2 −1 0 1 2 3 4 5 6
s −5 6 −7 8 −9 10 −11 12 −13 14

orders reach their maximum values about k = 3.0542, first
maximum of J2(k) [see Fig. 3(c)].

The first column of Fig. 10 illustrates the variation of dif-
ferent impulse amplitudes of a 1D SCASG having nav = 5
and nc = 1, in terms of k. The second column shows the
impulse combs for five different values of FMS. As nav is
an odd number, the amplitude of the DC impulse, A0, is a
descending function of k, and its value is always less than 1

2 .
According to Table 4, the amplitude of the fifth-order impulse
is A±nav = A±5 =

1
4 (J0(k)+ J10(k)). As is seen in the first

row of Fig. 10, |A±5| decreases by increasing k and reaches
to zero at k = 2.4047, which is very close to the first zero of
J0(k), k = 2.4048. The variations of the fourth- and sixth-
order impulses are similar. The amplitudes of the fourth-
and sixth-order impulses are A±4 =−

1
4 (J1(k)+ J9(k)) and

A±6 =
1
4 (J1(k)− J11(k)), respectively. As the values of J9(k)
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Fig. 10. Variation of different impulse amplitudes of a 1D SCASG having nav = 5 and nc = 1, in terms of k (first column). Absolute values of
different impulse amplitudes of five gratings with different given values of FMS (second column); see Visualization 6.

and J11(k) in the interval of 0≤ k ≤ 5 are almost negligible,
|A±4| ≈ |A±6| ≈

J1(k)
4 . Therefore, both |A±4| and |A±6|

reach their maximum values about k = 1.8412 [see Fig. 3(c)];
the exact values for both |A±4| and |A±6| are k = 1.8426. In
addition, the fourth- and sixth-order impulses vanish at the
vicinity of k = 3.8317, first zero of J1(k), and the exact values
for both |A±4| and |A±6| are k = 3.8319. In a similar way,
|A±3| ≈ |A±7| ≈

J2(k)
4 . Therefore, both the third and seventh

orders reach their maximum values about k = 3.0542, first
maximum of J2(k) [see Fig. 3(c)], and the exact values for |A±3|

and |A±7| are k = 3.0596 and k = 3.0547, respectively. For the
second-order impulse, its value increases by increasing k and
reaches the maximum value at k = 4.3500, then decreases (see
Visualization 6).

The first column in Fig. 11 illustrates the variation of ampli-
tudes of some impulses in the spectrum of a 1D SCASG having
nav = 7 and nc = 2, in terms of k. The second column shows

Table 4. Values of r and s Determining Amplitudes of
Different Order Impulses for a 1D SCASG Having nav = 5
and nc = 1

l ±1 ±2 ±3 ±4 ±5 ±6 ±7 ±8 ±9 ±10

r 4 −3 2 −1 0 1 2 3 4 5
s 6 −7 8 −9 10 −11 12 −13 14 −15

the impulse combs for three different values of FMS. According
to Eq. (23), the amplitude of the DC impulse A0 =

1
2 . The

amplitude of the seventh-order impulse A±nav = A±7 (see first
row) decreases by increasing k and reaches zero at k = 2.4052,
then increases. According to Table 2, A±7 =

1
4 (J0(k)− J7(k)).

As the values of J7(k) in the interval of 0≤ k ≤ 3.5 are almost
negligible (see Fig. 3), then A±7 ≈

J0(k)
4 . To determine the

accuracy of this approximation, compare the first zero of
J0(k), k = 2.4048 with the root of A0, k = 2.4052. The
variations of the fifth- and ninth-order impulses are similar.

https://doi.org/10.6084/m9.figshare.21320445
https://doi.org/10.6084/m9.figshare.21320445
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Fig. 11. Variation of different impulse amplitudes of a 1D SCASG having nav = 7 and nc = 2, in terms of k (first column). Absolute values of dif-
ferent impulse amplitudes of three gratings with different given values of FMS (second column).

The amplitudes of the fifth- and ninth-order impulses are
A±5 =−

1
4 (J1(k)− J6(k)) and A±9 =

1
4 (J1(k)+ J8(k)),

respectively. As the values of J6(k) and J8(k) in the interval
of 0≤ k ≤ 3.5 are almost negligible, |A±5| ≈ |A±9| ≈

J1(k)
4 .

Therefore, both |A±5| and |A±9| reach their maximum values
about k = 1.8412 [see Fig. 3(c)]; the exact values for |A±5| and
|A±9| are k = 1.8372 and k = 1.8407, respectively. In a similar
way, |A±3| ≈ |A±11| ≈

J2(k)
4 . Therefore, both the third and

eleventh orders reach their maximum values about k = 3.0542,
first maximum of J2(k) [see Fig. 3(c)], and the exact values for
|A±3| and |A±11| are k = 2.8602 and k = 3.0518, respectively.

B. Near-Field Diffraction from 1D SCASGs

Here, using the so-called angular (spatial) spectrum method
[60,63,68], near-field diffraction of a plane wave from a 1D
SCASG is investigated. By illuminating such a grating with a
coherent uniform light beam, according to Eq. (20), light field
distribution just after the grating can be written by

u0(x )=
1

2

[
1+

+∞∑
m=−∞

Jm(k) cos

(
2π l x

p

)]
, (25)

where f = 1
p , and we suppose that the condition of perio-

dicity of the grating is fulfilled. Then in Eq. (19), we replace
fm = fav +m fc by fm = l f , in which f is the fundamental fre-
quency of the grating and l = nav +mnc. According to Eq. (21),
the spatial spectrum of the light field just after the grating can be
written as follows:

U0(ξ)=
1

4

{
2δ(ξ)+

+∞∑
m=−∞

Jm(k)[δ(ξ − l f )+ δ(ξ + l f )]

}
.

(26)
In Fresnel approximation, by multiplying this expression to the
free space transfer function,

H = H0 exp[−iπλzξ 2
], (27)

the spatial spectrum at a distance z from the grating is obtained
in the following form:

Uz(ξ)=
1

2
δ(ξ)+

1

4

{
+∞∑

m=−∞

Jm(k)e−iπλzξ2

× [δ(ξ − l f )+ δ(ξ + l f )]

}
, (28)

where H0 = exp(ikz) is ignored for simplicity. The field distri-
bution at a distance z from the grating can be calculated by tak-
ing the inverse Fourier transform from Eq. (27),

uz(x )=
1

2
+

1

4

{
+∞∑

m=−∞

Jm(k)e−iπλz(l f )2
[e i2π l f x

+ e−i2π l f x
]

}
.

(29)
By defining zT =

2
λ f 2 =

2p2

λ
as Talbot distance of the grat-

ing, the resulting diffraction pattern can be rewritten in the
following form:
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Fig. 12. Intensity profiles of the diffracted light from the gratings illustrated in the first column of Fig. 1, just after the grating and at the Talbot
(first and fifth rows), half-Talbot (second and sixth rows), quarter-Talbot (third and seventh rows), and octant-Talbot (fourth and eighth rows) dis-
tances; see Visualization 7, Visualization 8, Visualization 9, and Visualization 10.

uz(x )=
1

2

[
1+

+∞∑
m=−∞

Jm(k)e
−i2π l2 z

zT cos

(
2π l x

p

)]
.

(30)
Comparing Eqs. (24) and (29), we see that, when the propa-
gation distance z equals to an integer multiple of zT, the light
amplitude exactly recovers its initial form. Figures 12 and
13 illustrate the intensity profiles of the diffracted light from
the gratings shown in the first and second columns of Fig. 1,
immediately after the grating and at different distances from
the gratings. As is apparent, at Talbot distances, the light field
completely recovers its initial shape.

In so-called half-Talbot distances zHT,n = (2n − 1) zT
2 ,

n = 1, 2, 3, . . ., using Eq. (29), we have

uz=zHT,n (x )=
1

2

[
1+

+∞∑
m=−∞

Jm(k)(−1)l cos

(
2π l x

p

)]
,

(31)
where we used exp[−i(2n − 1)π ] =−1 and (−1)l

2
= (−1)l .

Now using cos(θ − lπ)= (−1)l cos(θ), Eq. (30) reduces to

uz=zHT,n (x )=
1

2

{
1+

+∞∑
m=−∞

Jm(k) cos

[
2π l

p

(
x −

p
2

)]}
.

(32)
Comparing Eqs. (31) and (24), one can deduce that

uz=zHT,n (x )= u0

(
x −

p
2

)
, (33)

which means that at the half-Talbot distances the amplitude
fully recovers its initial form but with a lateral half-period shift,
comparing the first and second rows, and the fifth and the sixth
rows, in Figs. 12 and 13. This is a well-known feature of the
Talbot effect.

Let us now investigate quarter-Talbot distances, zQT,n =

(2n − 1) zT
4 , namely the halfway between the Talbot planes

and their nearest half-Talbot planes. Substituting z= zQT,n in
Eq. (29), we get

uz=zQT,n (x )=
1

2

[
1+

+∞∑
m=−∞

Jm(k)(−1)nl2
(i)l

2
cos

(
2π l x

p

)]
.

(34)
Details of derivation are similar to the derivation of Eq. (22)
of [61], when l gets even values (−1)nl2

(i)l
2
= 1 and when l

gets odd values (−1)nl2
(i)l

2
= i(−1)n [61]. As the value of l

depends on the values of nc and nav, three different possible cases
(groups) are as follows: both nc and nav are odd numbers (first
case), nc is odd and nav is even (second case), and nc is even and
nav is odd (third case). In the first case, if m is even (odd), then
the value of l is odd (even). In the second case, if m is even (odd),
then the value of l is even (odd). In the third case, l is always odd
regardless of the value of m. Therefore, in the first and second
cases, Eq. (33) reduces to

https://doi.org/10.6084/m9.figshare.21320442
https://doi.org/10.6084/m9.figshare.21320439
https://doi.org/10.6084/m9.figshare.21320436
https://doi.org/10.6084/m9.figshare.21320433
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Fig. 13. Intensity profiles of the diffracted light from the gratings illustrated in the second column of Fig. 1, just after the grating and at the Talbot
(first and fifth rows), half-Talbot (second and sixth rows), quarter-Talbot (third and seventh rows), and octant-Talbot (fourth and eighth rows) dis-
tances; see Visualization 11, Visualization 12, Visualization 13, and Visualization 14.

uz=zQT,n (x )=
1

2

1+
+∞∑

m=−∞
odd

Jm(k) cos

(
2π l x

p

)

× +i(−1)n
+∞∑

m=−∞
even

Jm(k) cos

(
2π l x

p

) ,
(35)

uz=zQT,n (x )=
1

2

1+
+∞∑

m=−∞
even

Jm(k) cos

(
2π l x

p

)

× +i(−1)n
+∞∑

m=−∞
odd

Jm(k) cos

(
2π l x

p

) ,
(36)

respectively. As is apparent, real and imaginary parts of the
complex amplitude are separated for both cases. Therefore, their
complex amplitudes can be rewritten in the following form:

uz=zQT,n (x )= ur (x )+ iui (x ), (37)

where ur (x ) and ui (x ) are two real and periodic functions with
periods p

2 and p , respectively. As the Fourier expansion of ui (x )
includes only odd values of l , the fundamental period of ui (x )

halves by squaring, while the fundamental period of ur (x ) does
not change by squaring. Therefore, the fundamental period of
the intensity profile at quarter-Talbot distances,

Iz=zQT,n (x )= ur (x )2 + ui (x )2, (38)

is p
2 . The details can be obtained using the theory presented

in the second and third sections of [61]. This attribute is also
well-known in the Talbot effect. According to the main result of
[61], and as for the first and second cases, the Fourier expansion
of the gratings, Eq. (24), includes both even and odd values of
l , and the contrast of the quarter-Talbot sub-images must have
considerable values. This feature is obviously seen in Fig. 12 (see
the third and seventh rows). Moreover, comparing Eqs. (34) and
(35) with Eq. (24), we deduce that quarter-Talbot sub-images
must lose their similarity with the initial (z= 0) intensity pro-
file. This feature is also apparently seen in Fig. 12, comparing the
first and third rows, and the fifth and the seventh rows.

In the third case, Eq. (33) reduces to

uz=zQT,n (x )=
1

2

[
1+ i(−1)n

+∞∑
m=−∞

Jm(k) cos

(
2π l x

p

)]
.

(39)
In this case again by considering Eq. (38) in the form of Eq. (36),
it can be shown that the fundamental period of the intensity pro-
file at quarter-Talbot distances is p

2 . As the Fourier expansion of
the grating, Eq. (24), includes only odd values of l , the quarter-
Talbot sub-images must not have considerable contrasts, again

https://doi.org/10.6084/m9.figshare.21320430
https://doi.org/10.6084/m9.figshare.21320424
https://doi.org/10.6084/m9.figshare.21320412
https://doi.org/10.6084/m9.figshare.21320409
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Fig. 14. First and fourth rows, plots of the maximum intensity detected over the diffraction patterns for the gratings illustrated in the first column
of Fig. 1, in terms of the propagation distance. Second, third, fifth, and sixth rows, corresponding intensity profiles just after the gratings (dashed green
curves) and at the distances in which the Imax(z) is absolute maximum (solid blue and red curves).

according to the results of [61]. Moreover, comparing Eqs. (38)
and (24), we deduce that quarter-Talbot sub-images must main-
tain their similarity with the initial (z= 0) intensity profile.
This feature is also apparently seen in Fig. 13, comparing the
first and third rows, and the fifth and the seventh rows.

Now let us consider near-field diffraction patterns at octant-
Talbot distances z±OT,n = (n ±

1
4 )

zT
2 , where n = 1, 2, 3, . . .. By

substituting z= z±OT,n in Eq. (29), we get

uz=z±OT,n
(x )=

1

2

[
1+

+∞∑
m=−∞

Jm(k)(−1)nl(∓i)l
2/2 cos

(
2π l x

p

)]
.

(40)
It can be shown that

(−1)nl(∓i)l
2/2
=

{
i l , if l is even,
(−1)n

√
∓i, if l is odd.

(41)

See Appendix A of [61]. Therefore, in the first to third cases,
Eq. (39) reduces to

uz=z±OT,n
(x )=

1

2

1+
+∞∑

m=−∞
odd

i l Jm(k) cos

(
2π l x

p

)

× +(−1)n
√
∓i

+∞∑
m=−∞

even

Jm(k) cos

(
2π l x

p

) ,
(42)

uz=z±OT,n
(x )=

1

2

1+
+∞∑

m=−∞
even

i l Jm(k) cos

(
2π l x

p

)

× +(−1)n
√
∓i

+∞∑
m=−∞

odd

Jm(k) cos

(
2π l x

p

) ,
(43)

uz=z±OT,n
(x )=

1

2

[
1+ (−1)n

√
∓i

+∞∑
m=−∞

Jm(k) cos

(
2π l x

p

)]
,

(44)
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Fig. 15. The same plots as in Fig. 14 are calculated for the gratings illustrated in the second column of Fig. 1.

Fig. 16. First row, Talbot carpets of two gratings from Fig. 1. Second row, intensity patterns immediately after the grating and at the Talbot
distance, and four distances at which Imax(z) is maximum. Colorbars are normalized to the intensity of the incident beam (see Visualization 15,
Visualization 16, Visualization 17, and Visualization 18).

respectively. Comparing the last three equations with Eq. (24),
we expect that only in the third case the intensity profile of the
produced Fresnel images is very similar to the initial (z= 0) pro-
file. This fact is obviously shown in the fourth and eighth rows of

Figs. 12 and 13. A similar behavior at octant-Talbot planes of the
Ronchi grating was reported by Patorski et al. in 1982 [69].

In the background Visualization 7, Visualization 8,
Visualization 9, Visualization 10, Visualization 11,
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Fig. 17. Variation of the parameter max{Imax(z)} in terms of FMS for the gratings having different values of nc and nav.

Fig. 18. First row, Talbot carpets of a binary grating with µ= 0.25
(first column) and a 1D SCASG with nc = 1, nav = 3, and k = 1.6
(second column). Second row, corresponding high resolution insets
including one of the bright spots over the Talbot carpets. Third and
fourth rows, intensity profiles along the white lines shown over the
insets.

Visualization 12, Visualization 13, and Visualization 14,
evolutions of 1D profiles of the diffracted light fields from
different 1D SCASGs under propagation are presented. Some
interesting aspects can be seen in these visualizations. For
instance, in some propagation distances, the intensity profiles
possess sharp and smooth peaks having maximum intensities
greater than the intensity of the incident light beam. It is note-
worthy that, also in the diffraction of a plane wave from a binary
grating, there are some non-smooth bright areas over the cor-
responding Talbot carpet at the vicinity of the Talbot distances
(before and after). We will come back to this issue and present
the details of the differences between the bright spots over the

Fig. 19. Schematic diagram of the experimental setup.

Talbot carpets of binary gratings and 1D SCASGs. By plotting
the maximum intensity of the diffraction patterns in terms of
the propagation distance, Imax(z), one can find the distances
at which the Imax(z) are the absolute maximum. The first and
fourth rows of Figs. 14 and 15 show the maximum intensity over
the diffraction patterns, Imax(z), under propagation from z= 0
to z= zT/2, for the gratings illustrated in the first column of
Fig. 1. In two propagation distances, illustrated by the letters a
and b on the plots, the value of Imax(z) reaches its maximum.
Intensity profiles at z= za and z= zb are depicted in the second,
third, fifth, and sixth rows. As is seen, the maximum value of
Imax(z)depends on the value of nc and nav.

For getting full information about the diffraction pattern
changes along z axis, in Fig. 16 the Talbot carpets of two differ-
ent gratings of Fig. 1 are depicted. As is expected, the maximum
intensity of the Talbot carpets is more than the intensity of
incident beam (see colorbars). In other words, there exist some
bright spots over the carpets where the intensity is higher than
the incident beam’s intensity. In fact, these bright spots are
the cross section of intensity bars formed over the transverse
plans at z= za and z= zb distances. The intensity of these
bright bars, max{Imax(z)}, depends on the parameters of the
gratings. In Visualization 15, Visualization 16, Visualization
17, and Visualization 18, by changing FMS of the gratings (with
definite values of nc and nav) from k = 0 to k = nav

nc
, one can

chase the variation of the parameter max{Imax(z)}. By the aid of
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Fig. 20. Near-field intensity patterns of a 1D spatially chirped amplitude binary grating with p1 = 0.1 mm, p2 = 0.3 mm, pc = 0.45 mm,
nc = 1, and nav = 3 at different propagation distances: (a) immediately after the grating, (c) at the quarter-Talbot distance z= zT

4 , (e) at the
half-Talbot distance z= zT

2 , and (g) at the Talbot distance z= zT; the others are not Talbot distance.

this approach, the intensity of the brightest spot over the Talbot
carpet is depicted in terms of FMS for the gratings having differ-
ent values of nc and nav in Fig. 17. As is apparent, by choosing
appropriate values for nc, nav, and FMS of a 1D SCASG, the
value of max{Imax(z)} reaches to several times of the intensity
of the incident beam. This feature might find applications for
trapping and aggregation of particles along straight lines.

It is worth noting that, in the diffraction of a plane wave from
a binary grating, the corresponding Talbot carpet also includes
bright spots having intensities higher than the intensity of the
incident beam. To show the advantages of the proposed gratings,
in Fig. 18 we present Talbot carpets of a binary grating and a 1D
SCASG. The parameters of the gratings are chosen so that the
maximum intensities of the Talbot carpets are almost equal.
To illustrate the differences between the intensity distribution
around the bright spots, high resolution insets of the Talbot
carpets are presented in the second row. The next rows show

1D intensity profiles passing through the points having maxi-
mum intensities in the propagation and transverse directions.
By looking at the second to the last row, it is apparent that the
bright spot of the binary grating splits into two closed spots with
non-smooth profiles, while the bright spot of the 1D SCASG is
isolated and has completely smooth profiles. It should be noted
that in [42], by considering a certain randomness for the open-
ing ratio of a binary grating, they smoothed the resulting Talbot
carpet. As a result of smoothing, the maximum intensity of
bright spots and the contrast of self-images remarkably decrease
(see Fig. 2 of [42]).

5. EXPERIMENTS

In the experiments, we used the second harmonic of an Nd:YAG
diode-pumped laser beam having a wavelength of λ= 532 nm,
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Fig. 21. Near-field intensity patterns of a 1D spatially chirped amplitude binary grating with p1 = 0.1 mm, p2 = 0.3 mm, pc = 0.225 mm,
nc = 2, and nav = 3 at different propagation distances: (a) immediately after the grating, (c) at the quarter-Talbot distance z= zT

4 , (e) at the
half-Talbot distance z= zT

2 , and (g) at the Talbot distance z= zT; the others are not Talbot distance.

which was spatially filtered and collimated, respectively, using a
spatial filter and a doublet lens (see Fig. 19).

Since we produced the needed gratings simply by printing
their transmission functions on the transparency sheets, and due
to the low spatial resolution of the used printers, we were forced
to print binary gratings instead of a sinusoidal one on the sheet
plates. As 1D spatially chirped amplitude sinusoidal and binary
gratings show almost the same near-field diffraction patterns,
the use of binary gratings is reasonable.

A 1D spatially chirped amplitude binary grating is placed on
a holder in which the grating’s plane is perpendicular to the opti-
cal axis of the beam. We use a digital camera (NIKON D7200)
to record the diffraction patterns at different distances from the
grating. The camera’s lens is removed, and the diffracted pattern
is directly imaged on its sensitive area. The dimensions of the

used gratings were 30 mm × 30 mm. In the experiments, they
are fully illuminated by the laser beam.

In Fig. 20, experimentally recorded near-field intensity
patterns of a 1D spatially chirped amplitude binary grating
with p1 = 0.1 mm, p2 = 0.3 mm, pc = 0.45 mm, nc = 1, and
nav = 3 are illustrated. The intensity patterns immediately after
the grating [Fig. 20(a)], at the quarter-Talbot distance z= zT

4
[Fig. 20(c)], at the half-Talbot distance z= zT

2 [Fig. 20(e)],
and at the Talbot distance z= zT [Fig. 20(g)] are shown. As is
apparent, we have the self-image of the structures at the quarter-
Talbot, at the half-Talbot, and at the Talbot distances. We also
see laterally shifted self-images at the half-Talbot distances,
while for the other distances, namely patterns in Figs. 20(b),
20(d), 20(f ), and 20(h), which are not the Talbot distances,
we do not see the self-images. Similarly, in Figs. 21 and 22, the
experimentally recorded near-field intensity patterns of two
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Fig. 22. Near-field intensity patterns of a 1D spatially chirped amplitude binary grating with p1 = 0.06 mm, p2 = 0.3 mm, pc = 0.5 mm,
nc = 1, and nav = 5 at different propagation distances: (a) immediately after the grating, (c) at the quarter-Talbot distance z= zT

4 , (e) at the
half-Talbot distance z= zT

2 , and (g) at the Talbot distance z= zT; the others are not Talbot distance.

sets of gratings are illustrated. For the first set, p1 = 0.1 mm,
p2 = 0.3 mm, pc = 0.225 mm, nc = 2, and nav = 3, and for
the second set, p1 = 0.06 mm, p2 = 0.3 mm, pc = 0.5 mm,
nc = 1, and nav = 5. Figures 21 and 22 show the intensity pat-
terns at different distances from the gratings: immediately after
the grating [Figs. 21(a) and 22(a)], at the quarter-Talbot dis-
tance z= zT

4 [Figs. 21(c) and 22(c)], at the half-Talbot distance
z= zT

2 [Figs. 21(e) and 22(e)], and at the Talbot distance z= zT

[Figs. 21(g) and 22(g)].

6. CONCLUSION

A new class of 1D spatial-frequency-modulated structures was
introduced, and their spatial spectrum and near-field diffraction
were investigated. Considering a sinusoidal frequency modu-
lation, we defined 1D spatially chirped structures in which

the spatial frequency sinusoidally alternates between two val-
ues, say f1 and f2. We showed that the transmittance of these
structures is generally an almost-periodic function with an
impulsive spatial spectrum. However, we found the condition
under which the transmittance of these structures is a periodic
function; therefore, the spatial spectrum forms a 1D lattice of
impulses. Under this condition, we called them 1D spatially
chirped periodic structures, and they were characterized by three
parameters: nc, nav, and FMS. Based on the transmittance of
a conventional amplitude sinusoidal grating, we defined a 1D
SCASG and rigorously investigated its spatial spectrum. It was
shown that the spatial spectrum of such grating can be managed
by adjusting the characteristic values of the grating. This fea-
ture might find applications in power sharing of the incident
beam among different diffraction orders. Furthermore, using
the so-called angular (spatial) spectrum method, near-field
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diffraction from a 1D SCASG was studied. It was also shown
that the diffraction patterns at the fractional Talbot distances
depend on the characteristic parameters of the grating. In some
propagation distances, over the diffraction patterns, there are
some sharp bright intensity bars having smooth profiles and
maximum intensities equal to several times of the incident light
beam’s intensity. The intensity of these bright bars depends
on the FMS of the grating and can be maximized by adjusting
the value of FMS. These bright bars might find applications
for trapping and aggregation of particles along straight lines.
In the continuum of this work, the diffraction from a grating
constructed by an array of 1D zone-plate-like apparatuses is
under study, where this kind of structure might find applications
in electromagnetic waves having long wavelengths.

APPENDIX A

Here we briefly review the definition and properties of almost-
periodic functions as an important generalization of the periodic
functions. Based on the Fourier theory, if g (x ) is a periodic func-
tion with a period p , then it can be uniquely expanded in a
Fourier series:

g (x )=
+∞∑

n=−∞

An exp(i2πn f x ), (A1)

where f = 1/p is the fundamental frequency of g (x ) and the
Fourier coefficients An are given by

An =
1

p

∫
p

g (x ) exp(−i2πn f x )dx , (A2)

in which
∫

p indicates an integration over any arbitrary interval
having a length p . Taking the Fourier transform, the spectrum
of the periodic function g (x ) can be expressed as follows [62]:

G(ξ)=
+∞∑

n=−∞

Anδ(ξ − n f ), (A3)

where δ is the impulse symbol. As is apparent, the spectrum is
a comb of impulses with a fixed step f whose n th impulse is
located at the frequency ξ = n f with an amplitude An .

An almost-periodic function can be uniquely expanded in the
form of a generalized Fourier series [62]:

g (x )=
+∞∑

n=−∞

An exp(i2π fn x ), (A4)

where fn are arbitrary real numbers, and the complex numbers
An are called the Fourier coefficients and are given by

An = lim
p→∞

1

p

∫
p

g (x ) exp(−i2π fn x )dx , (A5)

in which
∫

p indicates an integration over an arbitrary interval of
length p . It should be noted that the infinite sum in Eq. (A4) is
a generalized Fourier series, in which the frequencies fn are no
longer integer multiples of a fundamental frequency f , as was

in Eq. (A1) for a periodic function g (x ). The spectrum of an
almost-periodic function can be written as follows:

G(ξ)=
+∞∑

n=−∞

Anδ(ξ − fn). (A6)

As is seen, the spectrum of an almost-periodic function
includes a denumerable set of impulses, which are located at
the frequencies fn , and their amplitudes are An . Indeed, the
main feature of an almost-periodic function has an impulsive
spectrum, as a generalization of the spectrum of a periodic func-
tion. Although it still consists of a denumerable set of impulses,
it is not limited to a comb of impulses with a fixed step, as in
Eq. (A3), and it may consist of any set of impulses with arbitrary
frequencies fn .
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