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Abstract. Several mathematical approaches have been used to explore the moiré pattern. All of 

them have been considered for superimposing the static structures. In this paper, we have 

presented a theoretical approach to take into account the relative motion in superimposed 

gratings and its effect on the moiré fringe patterns. We have used a reciprocal vector approach 

and consequently obtained a comprehensive description of the dynamic behavior of the moiré 

patterns in a cinematic viewpoint. Formulations of the rotation and parallel moiré patterns of 

superposition of static and dynamic periodic structures have been derived in an unified form. 

Besides, some applications of moiré technique that have been already carried out in dynamical 

phenomena will be briefly reviewed.  

1.  Introduction  

The moiré phenomenon has been known for a long time; it was already used by the Chinese in ancient 

times for creating an effect of dynamic patterns in silk cloth. However, modern scientific research into 

the moiré technique and its application started only in the second half of the 19th century. The word 

moiré seems to be used for the first time in scientific literature by Mulot [1]. 

The moiré technique has been applied widely in different fields of science and engineering, such as 

metrology and optical testing. It is used to study numerous static physical phenomena such as 

refractive index gradient [2, 3]. In addition, it has a severe potential to study dynamical phenomena 

such as atmospheric turbulence [4-7], wave-front sensing [8, 9], nonlinear refractive index 

measurements [10, 11], vibrations [12], displacements and stress [13, 14], velocity measurement [15], 

acceleration sensing [16], etc. Application of the moiré techniques to the displacement measurements 

and light deflection improves precision remarkably.  

The moiré pattern can be created, for example, when two similar grids (or gratings) are overlaid at a 

small angle, or when they have slightly different mesh sizes. In many applications one of the 

superposed gratings is the image of a physical grating [3-11, 17]. When the image forming lights 
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propagate in a perturbed medium, the image grating is distorted and the distortion is magnified by the 

moiré pattern. 

Several mathematical approaches can be used to explore the moiré phenomenon. The classical 

geometric approach [18, 19] is based on a geometric study of the properties of the superposed grids, 

their periods and angles. By considering relations between triangles, parallelograms, or other 

geometric entities generated between the superposed layers, this method leads to formulae that can 

predict, under certain limitations, the geometric properties of the moiré patterns. Another widely used 

classical approach is the parametric equations method [20]; this is a purely algebraic approach, based 

on the equations of each family of lines in the superposition, which also yields the same basic 

formulae. The best adapted approach for investigating this phenomenon in superposing of periodic 

structures is the spectral approach, which is based on the Fourier theory. This approach has been 

largely developed by Isaac Amidror [21]. The same enables one to analyze properties not only in the 

original grids and in their superposition but also in their spectral   representations. First, one considers 

the use of Fourier series decompositions, purely in the image domain, for representing the original 

repetitive structures, their superposition’s and their moirés. Second, the use of the Fourier theory for 

the interpretation of the moiré pattern in spectral terms as an aliasing phenomenon is introduced. 

Calculating the moiré pattern using Ewald's sphere of reflection, has also been suggested [22-25]. The 

information about the fringe structure is obtained by adding spatial frequencies vectorially. The period 

and orientation of the structures can be represented by a vector in the spatial frequency plane. The 

length of the vector is the frequency and its angle is the orientation of the grating lines. In this 

approach the influence of the moiré fringes profile of the grid period is not considered [23]. 

It must be noted that a rigorous approach to the moiré pattern is presented by R. Gevers [26]. He 

succeeded in performing a treatment of the moiré effect taking into account the dynamical effects 

wholly by using the dynamical theory of electron diffraction. 

 Experimental moiré techniques have been utilized to investigate a variety of dynamic problems, 

including production of sinusoidal phase grating in photo-refractive crystals [27, 28], study of rapidly 

changing stress fields and stress pulse propagation [29, 30], propagating cracks [31], studies of 

atmospheric turbulence[6-8], and so on. Theoretical consideration of the behavior of the moiré fringes 

in the dynamical phenomena is not comprehensively demonstrated. In this paper we attempt to extend 

the analysis of the moiré patterns of moving gratings. Formulation of the moiré pattern of 

superposition of moving periodic structures is derived from the reciprocal vector approach. This 

approach proves to be very useful in the investigation of superposed periodic layers and their moiré 

effects. The individual structures are characterized by spatial frequency, orientation, profile (variation 

of transmittance over one period), and velocity parameters. As we will see, all the specific moiré 

formulae are derived using the presented approach. 

2.  Formulation  

In the moiré phenomenon, when one of the superposed linear patterns is translated on top of the other 

in the direction perpendicular to its lines' direction, the moiré fringes move in a direction perpendicular 

to the fringes much faster than the moving grating. Thus, the moiré pattern has a velocity much larger 

than the velocity of the individual patterns. In the following we consider this kind of superposition of 

the periodic structures. 

For simplicity of the calculations, transmittances of the superposed structures are assumed sinusoidal 

functions. Gratings periods, 1d and 2d , and their reciprocal vectors 1k and 2k  are related together as 

(see Fig. 1)   
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where, 
1k̂  and 2k̂  are the unit vectors directed along the perpendicular to the gratings' lines, 

respectively. Transmittance functions of the gratings can be written as 

  ,cos1)( 1111  .rkr 1VaT                                                                                          (2) 

  ,cos1)( 2222  .rkr 2VaT                                                                                          (3) 

where, r  is the position vector in the plane of the gratings, iV , ia , and i  are the visibility, 

transmission coefficient, and initial phase of the transmittance function of the individual gratings ( i = 

1; 2).  iV  and ia  satisfy the following constraints: 

.2,1       ,1 0           ,1)1( 0  iVVa iii  

 

 
Figure 1. (a) and (b), typical sinusoidal gratings with reciprocal 

vectors 1k  and 2k  (c) corresponding multiplication moiré 

pattern with reciprocal vector mk  

 

Now, consider the gratings to move in-plane by the velocities 1v  and 2v , respectively, in directions 

perpendicular to their lines' directions, i.e. 11 kv ˆ
1v  and

 22 kv ˆ
2v . In this case the transmittance 

functions of the gratings can be written as: 

  ,cos1),( 11111   tVatT .rkr 1                                                                               (4) 

  ,cos1),( 22222   tVatT .rkr 2                                                                    (5) 

so 
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where, 1 and 2 , respectively,  are the time required to transfer the gratings equal to their spatial 

periods. Now, to get the velocities of the phase translations we equate the differentials of Eqs. (4 ) and 

(5) equal to zero: 

         .011   td .rk1    

For constant 1k , 1 , and  1  it is equivalent to 

 

      ,011  dtd r.k1    

or 

      ,01111  dtdrk 
                                                                                                              

 (6) 

where 1r  is the component ofr  in the direction of 1k , and 1k1k . Thus, the magnitude of the first 

grating velocity 1v , is 

   .1

1

11 v
kdt

dr



                                                                                                            (7) 

By the same token, for the second grating we obtain: 

   .
2

2
2

k
v


                                                                                                                            (8) 

The moving moiré pattern is produced by the multiplication of the transmittance functions of the 

moving gratings: 
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Because, the moiré pattern is the pattern with the lowest spatial frequency, the transmittance function 

of the moiré pattern can be deduced as 
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Thus, visibility mV , transmission coefficient ma , and initial phase m  of the moiré fringes are  

.    ,    ,
2

2121
21   mmm aaa

VV
V                                                                             (11) 

 It should be mentioned that, here the formulation for the visibility of the fringes is introduced 

considering full coherence of the illumination or immediate superimposing of the gratings. However, 

in many applications such as imaging through the atmosphere a certain degree of coherence should be 

considered in the formulation [32].  

The transmittance function of the moiré pattern can be expressed as 

  ,cos1 mmmmm tVaT   .rkm                                                                            (12) 

where 

,21m kk k                                                                                                                     (13) 

and  

. 21m                                                                                                                     (14) 

By squaring both sides of the Eq. (13) we obtain the following expression 

,cos2 21

2

2

2

1

2

m kkkkk                                                                                                 

    (15) 

where   is the angle between  1k and 2k  (see Fig. 2). Using 
1
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d
k


 and 
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d
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 , the period of the 

moiré pattern is obtained as: 

 
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                                                                                      (16) 

In addition, according to Fig. 2 we have 

,k.kk.k 0m02
ˆˆ            

or 

,sinsin2  mkk                                                                                                        (17) 

where,   is the angle between 1k and mk , and 0k̂  is a unit vector directed along the perpendicular to 

1k  in the 1k  and 2k  plane, as illustrated in Fig. 2. Substitution of Eq. (15) into (17) leads to the 

moiré fringes' orientation formula 
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Figure 2. Representation of the gratings 

reciprocal vectors 1k  and 2k , and the 

corresponding reciprocal vector of the moiré 

pattern mk .  0k̂  is a unit vector directed along 

the perpendicular to 1k  in the 1k  and 2k  plane. 

 

 

 

Now ,we set the differential of the argument in Eq. (10) equal to zero: 

    ,0)( 2121   td .rkk 21  

For constant  ik , i , and i  )2,1( i  it leads to     

    ,0. 21  dtd rkk 21  

or 

,0 dtdrk mmm                                                                                                                            (19) 

where mr is the scalar component of r  in the direction of mk . Thus, the magnitude of the velocity of 

the moiré fringes mv , is 

   .
m

m
m

k
v


                                                                                                                           (20) 

   Now, if we express the velocity of the moiré fringes in terms of the gratings `velocities and constants 

we get   
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Special cases: 

a) The period and orientation of the moiré fringes in the parallel moiré pattern are derived by 

considering 21 dd  , 0  in Eqs. (16) and (18): 

        ,
21

21

dd

dd
dm


                                                                                                               (22) 

and 

     0.                                                                                                                                         (23) 

Thus, in this case the moiré fringes are parallel to the lines of the individual gratings. 

b) The period and orientation of the moiré fringes in the rotation moiré pattern are derived by 

considering ddd  21  and 0  in Eqs. (16) and (18): 

        ,
)2/sin(2 

d
dm                                                                                                                (24) 

and 

        ),2/cos(sin      

or 

).
22

(


                                                                                                                   (25) 

That means, the moiré fringes are perpendicular to the bisector of the gratings' lines. 

c) For the case 21 dd  , 0 , 01 v , 02 v  the velocity of the moiré fringes becomes: 

        .
21

2
1

1

1

dd

d
vd

d

v
v mm


                                                                                            (26) 

This means moiré fringes move in the same direction as the grating, but much faster.   

d) For the case ddd  21 , 0 , 01 v , 02 v , the velocity of the moiré fringes becomes: 
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In this case moiré fringes move in the direction almost perpendicular to the grating motion.  

It should be noted that the presented approach is valid for non-relativistic velocities and for relativistic 

velocities some modification must be considered. 

3. Conclusion 

In many experiments, the moiré technique has been utilized to investigate a variety of dynamical 

problems. At the formation of the moiré patterns sometimes one of the superposed gratings is the 

image of a physical grating. When the image forming lights propagate in a dynamic medium, the 

image grating appears as a dynamic grating and dynamical behavior of the medium is magnified by 

the moiré pattern. 

Theoretical consideration of the behavior of the moiré fringes in the dynamical phenomena is not 

completely demonstrated. In this paper a general theory for the moiré patterns of the moving periodic 

structures is derived from the reciprocal vectors approach. Formulation of the rotation and parallel 

moiré patterns in the superposition of static and dynamic periodic structures are unified. The 

individual structures are characterized by spatial frequency, orientation, profile (variation of 

transmittance over one period), and velocity parameters. All the specific moiré formulae are derived 

using the presented approach. 
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