
Application of “parallel” moiré deflectometry
and the single beam Z-scan technique in the
measurement of the nonlinear refractive index

Saifollah Rasouli,1,2,* H. Ghasemi,1 M. T. Tavassoly,2,3 and H. R. Khalesifard1,2

1Department of Physics, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan 45137-66731, Iran
2Optics Research Center, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan 45137-66731, Iran

3Physics Department, University of Tehran, Kargar Shomally Avenue, Tehran 14399-66951, Iran

*Corresponding author: rasouli@iasbs.ac.ir

Received 18 November 2010; accepted 28 March 2011;
posted 5 April 2011 (Doc. ID 138369); published 23 May 2011

In this paper, the application of “parallel” moiré deflectometry in measuring the nonlinear refractive
index of materials is reported. In “parallel” moiré deflectometry the grating vectors are parallel, and
the resulting moiré fringes are also parallel to the grating lines. Compared to “rotational” moiré deflec-
tometry and the Z-scan technique, which cannot easily determine the moiré fringe’s angle of rotation and
is sensitive to power fluctuations, respectively, “parallel” moiré deflectometry is more reliable, which
allows one to measure the radius of curvature of the light beam by measuring the moiré fringe spacing.
The nonlinear refractive index of the sample, including the sense of the change, is obtained from the
moiré fringe spacing curve. The method is applied for measuring the nonlinear refractive index of
ferrofluids. © 2011 Optical Society of America
OCIS codes: 190.0190, 120.4120, 110.6760, 190.4400.

1. Introduction

One of the convenient methods for the measurement
of the nonlinear refractive index, n2, is the Z-scan
technique [1,2]. In this technique a single focused
Gaussian laser beam is prepared. The sample is
moved along the propagation direction, z, in the focal
region of the beam. The beam power propagating
through a small aperture at the far field is measured
as a function of sample position. This provides neces-
sary data for determination of the nonlinearity.

In the presence of a nonlinear sample near the
focal plane of a Gaussian laser beam in a tight-focus
limiting geometry, the optical-field-induced refrac-
tive index changes in medium and leads to the
well-known self-focusing or defocusing (self-lensing)
effect. As a result, the radius of curvature of the laser
beam is changed due to the self-lensing effect. In this

paper we have used “parallel”moiré deflectometry to
measure the radius of curvature of the laser beam as
a function of the sample position. In “parallel” moiré
deflectometry the grating vectors are parallel, and
the resulting moiré fringes are also parallel to the
gratings lines. It should be mentioned that spatial
analysis of the thermal lens [3] and measurement
of the nonlinear refractive index [4] have been re-
ported using moiré deflectometry. In the first work
analysis was based on the measurement of the mini-
mum intensity of the moiré fringes, and the second
work was based on the measurement of the moiré
fringe’s rotation angle. The main advantage of our
method is the measurement of the radius of curva-
ture of the beam by measuring the moiré fringe
period. This method is more reliable compared to
“rotational”moiré deflectometry, which cannot easily
determine the moiré fringe’s angle of rotation [4–13].
Also, compared to the classic Z-scan technique, it
has the advantage of being insensitive to the beam
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pointing instability and is insensitive to the power
fluctuations.

2. Experimental Setup

A schematic diagram of the experimental setup is
shown in Fig. 1. A laser beam is focused by a lens
and is recollimated by another lens, then strikes a
grating. In the presence of a sample near the focal
point of the first lens, the radius of curvature of
the beam is changed due to the self-lensing effect.
By superposing a similar grating on one of the
self-images of the first grating, for the case where
the gratings vectors are parallel to each other, the
“parallel” moiré fringes are formed just due to the
beam divergence or convergence. The sample is
moved along the light beam, and the moiré fringes
corresponding to the different positions of the sample
are recorded. The nonlinear refractive index of the
sample and its sign are obtained from the moiré
fringe spacing curve.

3. Theoretical Framework

In the theoretical considerations we assume that at
the focal plane of the first lens L1, z ¼ 0, we know the
beam waist w0 of Gaussian beam and the thin non-
linear sample is modeled as a thin lens of focal length
f sðzÞ that is located at z. The refractive index of the
sample, n, which depends on the radiation intensity,
may be expressed in terms of the nonlinear refractive
index, n2, through nðρ; zÞ ¼ n0 þ n2Iðρ; zÞ ¼ n0þ
Δnðρ; zÞ, where n0 is the linear index of refraction,
Iðρ; zÞ is the irradiance of the laser beam within
the sample, Δnðρ; zÞ is the light-induced refractive
index change, and ρ is the radial coordinate. For
the Gaussian beam traveling in the þz direction,
we can write the beam irradiance as

Iðρ; zÞ ¼ I0
w2

0

w2ðzÞ exp
�
−

2ρ2
w2ðzÞ

�
; ð1Þ

where w0 and I0 are the beam waist and the beam
irradiance at the focus, respectively, wðzÞ ¼
w0ð1þ z2=z20Þ1=2 is the beam radius at z, z0 ¼ πw2

0=λ
is the diffraction length of the beam, and λ is the laser
wavelength. For the Gaussian laser beam, the radial
dependence of the irradiance gives rise to a radially
dependent refractive index change near the beam
axis by

Δnðρ; zÞ ¼ n2I0
w2

0

w2ðzÞ exp
�
−

2ρ2
w2ðzÞ

�
: ð2Þ

In the parabolic approximation one can rewrite
Eq. (2) in following form:

Δnðρ; zÞ ≈ n2I0
w2

0

w2ðzÞ
�
1 −

2ρ2
w2ðzÞ

�
: ð3Þ

For a thin nonlinear medium of thickness s, near
the beam axis the parabolic approximation yields a
thin spherical lens with an effective focal length of

f sðzÞ ¼
πw4ðzÞ
8n2sP

¼ f sð0Þ
�
1þ z2

z20

�
2
; ð4Þ

where f sð0Þ is defined as the induced effective focal
length at the focus. In the derivation of Eq. (4) we
have used the transmission phase function of a posi-
tive thin lens − 2π

λ
ρ2
2f [14] and I0 ¼ 2P=πw2

0, where P is
the laser power and f is the focal length of lens.
Compared to Eq. (4) of [4], there is a mistake in
the derivation of Eq. (4) of [4], where the factor 4
should be replaced by 8 in the denominator [15].

The laser beam, after propagation through the
sample, is recollimated by the second lens, L2, when
the sample is placed just at the focal plane of L1.
Then the beam illuminates two gratings G1 and
G2 of equal periods d, separated by Zk along the op-
tical axis. The grating vectors are parallel to each
other and are perpendicular to the optical axis of
the setup. The parameter Zk denotes the kth Talbot’s
distance for the G1. Moving the sample from z ¼ 0
causes the location of the focal point to move and cor-
respondingly changes the radius of curvature of the
beam on G1. In this case, the spatial period of the
self-image is magnified by rþZk

r , where r is the radius
of curvature of the laser beam at the G1 plane [16].
More detail and a new application of this kind of
moiré fringes are presented in [16]. It should be men-
tioned that r is positive when the beam on the G1
plane is divergent and is negative when the beam
is convergent. In theG2 plane, a multiplicative moiré
pattern will appear by superposition of the kth self-
image of G1, with period d� δd, and G2, with period
d. Here the “þ” and the “−” signs correspond to the
divergent and convergent beams, respectively. In
this case the spatial period of the moiré fringes is
obtained by

dm ¼ d2

δd ; ð5Þ

and the moiré fringes are parallel to the grating
rulings. Using δd ¼ Zk

jrj d in Eq. (5), we get

dm ¼ jrjd
Zk

: ð6Þ

Thus, dm depends on the radius of curvature of the
beam. When the beam is focused on G1, dm is equal

Fig. 1. Schematic diagram of the experimental setup. D.F., L1,
L2, G1, G2, L3, S.F., D, and L4 stand for neutral density filter,
focusing lens, collimating lens, first grating, second grating,
Fourier transforming lens, spatial filter, diffuser, and imaging lens,
respectively.
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to zero. This case, for a sample having n2 < 0, is ob-
tained on the −z side of the focus. Now let us describe
the propagation of the beam through L1 (with focal
length f 1), the sample (with an effective focal length
f sðzÞ), L2 (with focal length f 2), and the distances
between them using the ray tracing procedure. By
using the transfer matrices of lenses and free spaces,
the ABCD matrices of the system would be

�
A B

C D

�
¼

� 1 0
−1
f 2

1

��
1 f 2 − z

0 1

�� 1 0
−1
f sðzÞ 1

�

×
�
1 f 1 þ z

0 1

�� 1 0
−1
f 1

1

�
: ð7Þ

The effective focal length, EFL, of a system is the
distance from the principal point to the focal point.
The back focal length, BFL, or back focus is the dis-
tance from the vertex of the last surface of the system
to the second focal point. From the theory of the
ABCD matrices, the focal length of a system and
the EFL − BFL are given by f t ¼ −1

C and S ¼ 1−A
C ,

respectively [17]. According to the configuration of
Fig. 1, the radius of curvature of the beam on G1
can be written as

rðzÞ ¼ L2 − SðzÞ − f tðzÞ; ð8Þ

where L2 is the distance of the L2 and G1, and SðzÞ
is the distance of the exit plane and the second

principal plane of the complex optical system. After
some calculations, we obtain

rðzÞ ¼ L2 þ
f 22
z
−

f sðzÞf 22
z2

− f 2: ð9Þ

Finally, using Eqs. (4) and (9) in Eq. (6), we have

dmðzÞ ¼
d
Zk

����
�
L2 þ

f 22
z
−

f 22
z2

f sð0Þ
�
1þ z2

z20

�
2
− f 2

�����:
ð10Þ

Equation (10) shows that when the sample is
placed at the focus (z ¼ 0), the moiré fringe spacing
will be infinite. Furthermore, it shows there is a local
nonzero minimum value for dm in the þz side of
the focus (for f s < 0) or in the −z side (for f s > 0).
By measuring the moiré fringe spacing at various
sample positions, using Eq. (10) f sð0Þ will be ob-
tained. Finally, using Eq. (4), n2 will be determined.

4. Experimental Results

We have examined the technique for measuring the
nonlinear refractive index in ferrofluids, Au nanopar-
ticles, and neutral red organic dye. In this work, we
refer to the measurements we performed on a 2mM
concentration of ferrofluids (EFH1 from Ferro Tec.)
in thinner solution in a 1mm thick cell. The second
harmonic of a 70mW cw diode pumped Nd:YAG laser
beam passes through a double lens telescopic system

Fig. 2. Typical moiré patterns recorded at different distances of the sample from the focal plane for laser power 70mW. The corresponding
video can be observed in the background (Media 1 DVI, 1:79MB).
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and strikes G1. The distance between planes of G1
and G2 is chosen as 77mm. The gratings G1 and
G2 with the period of 1=100mm were installed on
suitable mounts. The holders of the gratings could
be rotated around the optical axis to adjust the angle
between the gratings. The lens L3 forms the Fourier
transform of the moiré pattern on its second focal
plane. Using a suitable spatial filter in the focal
plane of L3, the unwanted frequencies are removed.
A diffuser D is installed after the spatial filter. The
image of the moiré pattern is projected on a CCD
camera by lens L4. The projecting lens, L4, is
equipped with a variable aperture diaphragm to
avoid CCD saturation. For some applications, one
can replace the diffuser D in Fig. 1 with the CCD
and record the moiré pattern directly.

The sample is moved along the z direction of the
beam, and the moiré fringes corresponding to the
different positions of the sample are recorded and
stored in a computer. Figure 2 shows typical frames
of the moiré fringes patterns that were recorded in
the þz side of the focus for the laser power 70mW.
The background movie (Media 1) of Fig. 2 contains
all of the moiré patterns that were recorded in þz
side of the focus. We have observed the dm ¼ 0 case
on the −z side of the focus and a nonzero minimum
value for dm on the þz side of the focus. Thus, accord-
ing to Eqs. (10) and (4), the signs of f s and n2 of the
sample obtained are negative. This result is also
obtained directly by fitting Eq. (10) on the experi-
mental values of dm.

In Fig. 3measured Z-scan values of themoiré fringe
period are plotted for two laser powers, 25 and70mW.
FortheexperimentalvaluesZk ¼ 77mm, f 1 ¼ 75mm,
f 2 ¼ 585mm,L2 ¼ 265mm, d ¼ 1=100mm, andw0 ¼
31 μm, the mean value of n2 obtained from a series of
independent experiments is−ð2:2� :1Þ×10−4 cm2W−1.
This error takes intoaccountnot only the fittingerrors
but also the reproducibility of the experiment. The

order ofmagnitude ofn2 is compatiblewith the typical
value obtained by other techniques [18].

5. Conclusion

“Parallel”moiré deflectometry is used to measure the
nonlinear refractive index in materials. We have
measured the curvature of the laser beam and, as
a result, the nonlinear refractive index of the sample
by measuring the moiré fringe spacing in a Z-scan
setup equipped with a moiré deflectometer. Com-
pared to “rotational” moiré deflectometry, measure-
ment of the moiré fringe spacing is more accurate
than the rotation measurement. This method is also
more reliable than the Z-scan technique that is based
on power measurements, because in this method we
do not need to use precise power detectors. In addi-
tion, there are major disadvantages associated with
the Z-scan technique. For example, the Z-scan curve
is distorted by misalignment, sample imperfections,
and laser beam power fluctuation during the mea-
surement. Finally, by suitable selection of grating
period and the distance between the gratings, one
can adjust the precision of the method according to
the nonlinearity of the sample.

The authors thank Yasser Rajabi for some useful
help in setup arrangement. Also, the authors
acknowledge A. Javadi and F. Kabiri for some useful
help in sample preparation.
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