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Abstract. Specification of vibration modes, amplitudes, and damping
coefficients of structures are crucial issues in civil and mechanical engi-
neering. Several techniques have been used for this kind of studies,
including holographic interferometry, speckle interferometry, and moiré
technique. But, for a large-scale structure, the modal analysis technique
is usually used. We use the time-averaged digital image of a sinusoidal
pattern fixed on a vibrating 6-m iron I-beam to study in-plane vibration.
The study includes specification of vibrating modes, amplitudes, and
damping coefficients. Using a wide-angle high-resolution digital camera,
successive images of the vibrating pattern are recorded in exposure
times much longer than the vibration period and much shorter than the
relaxation time. The visibility measurement along the images leads to the
specification of the mentioned parameters. © 2008 Society of Photo-Optical In-
strumentation Engineers. �DOI: 10.1117/1.2927460�
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Introduction

he study of vibration modes, amplitudes, and damping
oefficients in large-scale structures, such as bridges and
uildings, is a significant topic. Several mechanical and op-
ical techniques are available for this kind of study. Among
he mechanical techniques the finite elements technique,
hich is called the “modal analysis” technique, is more

requently applied.1,2 In this technique, the vibration char-
cteristics are deduced from the responses of a structure to
xternal activations applied at several points. In this tech-
ique, the responses are collected using accelerometers3 or
aser Doppler vibrometers4 installed at different points of
he structure. These pointwise techniques suffer from ir-
egular mode shape estimation as a result of the lengthy
ata acquisition period. In addition, a large number of sen-
ors are required for a large-scale structure.

Optical techniques, including holography, speckle, and
oiré interferometry have been used for vibration studies

n small-scale structures. The holography-based techniques
uch as classical and digital time-averaged holography, ho-
ographic interferometry, and electronic/digital speckle pat-
ern interferometry �ESPI/DSPI� have been frequently ap-
lied for vibration studies.5–10 While holographic
echniques are very effective for measuring out-of-plane
isplacements of very small magnitudes, moiré
ethods11–14 are well-suited for determining relatively

091-3286/2008/$25.00 © 2008 SPIE
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large out-of-plane displacements. Speckle techniques have
been used for recording in-plane vibrational displacement.
However, as the speckles lose correlation when large dis-
placements occur, measuring relatively large in-plane vi-
brational displacements is impractical. Meanwhile, the vi-
bration study of a single curved shells by the time-averaged
reflection grating principal have been suggested,15 but it is
limited to reflective curved surfaces. In this paper, we ex-
tend our previous work16 to include the study of damping
behavior and the experimental measurement of the damp-
ing coefficient. Also, the experiments are performed on a
larger structure, a 6-m iron I-beam.

The main advantages of this method include the appli-
cability to large-scale structures and to a wide range of
in-plane displacements �of the order of millimeters and
more�, high reliability, and simplicity of application. In the
presented formulation vibrations of single frequency are
considered, but extension to vibrations of more than one
frequency seems plausible.

2 General Description

We study the in-plane vibration component of a long beam
vibrating perpendicular to its length. The study is based on
processing the visibilities of the time-averaged digital im-
ages of a grating fixed on the beam. Based on some reason-
able assumptions, the beam vibration is modeled by a
single-frequency sinusoidal vibration and experimental re-
sults turn out to be in good agreement with the model.
May 2008/Vol. 47�5�1
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If we paste a linear periodic pattern on the surface of a
arge structure, such as a beam, and cause it to vibrate in
he pattern plane perpendicular to the pattern lines, the im-
ge of the pattern in an imaging system, say a CCD camera,
lso vibrates accordingly. Then, recording the time-
veraged intensity distribution on the image plane in a time
nterval much larger than the vibration period, in general,
e observe nonuniform visibility along the pattern line di-

ection, which resembles moiré fringes, and therefore, are
ometimes called “time-averaged moiré fringes.” The re-
ions of unit normalized visibility are the nodes of the vi-
ration mode. Twice the distance between two successive
odes divided by the magnification of the imaging system
ives the wavelength of the vibrational mode. For evalua-
ion of the amplitude, in general, one faces two different
ases:

1. One is a case with nonzero visibility across the pat-
tern, which enables amplitude evaluation by measur-
ing the lowest visibility.

2. The other is a case where between two successive
nodes there are regions of zero visibilities. Then, the
distances between a node and the zero visibility re-
gions would provide the amplitude of the vibration.

A plot of the vibration amplitude versus time is required
o determine the amplitude damping coefficient.

Formulation
he intensity distribution on the image of a sinusoidal pat-

ern fixed on the lateral surface of a nonvibrating beam can
e represented by the following expression:

�x,y� =
I0

2
�1 + a�x� sin �2�

p
y�� �a�x�� � 1, �1�

here I0 is the illuminating irradiance, p is the pitch of the
mage pattern, and a�x� stands for the visibility of the pat-
ern at distance x from the left end of the structure image.
he y axis is in the pattern plane and perpendicular to the
attern strips �Fig. 1�. If we put the structure into sinusoidal
ibration, the image pattern vibrates sinusoidally. Assuming
hat the vibration along the strips is negligible, the displace-
ent of an arbitrary point on the image pattern at time t,

fter the beginning of vibration, can be given by

�x,t� = L0�x�e−�t sin ��t� , �2�

here L0�x�, �, and � are the initial displacement ampli-
ude of the image at distance x, the damping coefficient,
nd the angular frequency of the vibration, respectively. It
s assumed that the displacements of points with the same x
re the same. Due to vibration, the phase of the points at
istance x on the image changes by

ig. 1 Schematic side view of the beam used for formulation of the
eam vibration. The beam is hit at the middle point indicated by V.
ptical Engineering 053603-
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���x,t� =
2�

p
L0�x�e−�t sin ��t� �3�

with respect to the rest state. Thus, the intensity at point
�x ,y� can be given by

I�x,y,t� =
I0

2
�1 + a�x� sin �2�

p
y + ���x,t��	 . �4�

Substituting ���x , t� from Eq. �3� in Eq. �4� we get

I�x,y,t� =
I0

2
�1 + a�x� sin �2�

p
y +

2�

p
L0�x�e−�t sin ��t��	 ,

�5�

or

I�x,y,t� = I0�1 + a�x� sin �2�

p
y�

cos �2�

p
L0�x�e−�t sin �2�

�
t�� + a�x� cos �2�

p
y�

sin �2�

p
L0�x�e−�t sin �2�

�
t��	 , �6�

where � is replaced by 2� /�. We record the successive
images of the vibrating pattern by the same exposure time
T. Exposure time T is so chosen that to be considerably
larger than the vibration period � and considerably shorter
than the relaxation time �−1. The time-averaged intensity at
point �x ,y� for m’th exposure time can be expressed as
follows:

I�x,y,mT� =
I0

2 �1 +
a�x�

T



�m−1�T

mT

sin �2�

p
y�

cos�2�

p
L0�x�e−�t sin �2�

�
t�� dt

+
a�x�

T



�m−1�T

mT

cos �2�

p
y�

sin �2�

p
L0�x�e−�t sin �2�

�
t�� dt	 m

= 1,2, . . . . �7�

Since �−1�T, the changes of e−�t in time interval T can
be ignored. Now, recalling that the zero order Bessel func-
tion is17

J0�x� =
1

2�



0

2�

cos �x sin ���� d� , �8�

and also

1

2�



0

2�

sin �x sin ���� d� = 0, �9�

and regarding �2� / p�L0�x�e−�t and �2� /��t as x and �, Eq.
�7� reduces to
May 2008/Vol. 47�5�2
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�x,y,mT� =
I0

2
�1 + a�x� sin �2�

p
y�J0�	�x,mT��	 , �10�

here 	�x ,mT�= �2� / p�L0�x� exp �−�mT�. The time inter-
al between two successive exposures is very small com-
ared to T. Since the vertical displacement of the pattern
aries across the beam, the visibility on the time average
mage pattern varies with distance x. In addition, due to
ibration damping, the visibility varies on successive im-
ges. On a given time-averaged image, we measure the
ntensity distribution along the y direction at a distance x

nd obtain Ī�x , : ,mT�max and Ī�x , : ,mT�min. Thus, the vis-
bility at a distance x from the left end of the image on the
’th image is defined by

�x,mT� =
Ī�x, :,mT�max − Ī�x, :,mT�min

Ī�x, :,mT�max + Ī�x, :,mT�min

m = 1,2,3, . . . .

�11�

ubstituting from Eq. �10� in Eq. �11� and dividing the
esult by a�x�, the visibility of the pattern at rest, we get the
ormalized visibility:

n�x,mT� = �J0�	�x,mT��� . �12�

quation �12� is plotted in Fig. 2�a�. According to this plot
or Vn
0.4 we have single value for 	 and L�x�. But, for

n�0.4, 	 is multivalue, therefore, for specification of
�x� other considerations should be considered.

.1 Vibration Mode Specification
e assume that measurement takes place after formation of

tanding waves. Considering the boundary conditions
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ig. 2 Simulation of �a� the normalized visibility versus the displace-
ent amplitude to the pitch on a sinusoidally vibrating sinusoidal
attern and �b� the ratio of the vibration amplitude A to the pattern
itch p, versus the nonzero minimum visibility on a sinusoidally vi-
rating sinusoidal pattern.
ptical Engineering 053603-
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L�0�=0 and L�X�=0, where X is the length of the beam
image, the displacement of an arbitrary point on the beam
image in the y direction can be given by

L�x,t� = A0e−�t sin �2�

�
x� sin ��t� , �13�

where A0 is the amplitude on the image of the standing
wave at t=0, and � is the corresponding wavelength. The
wavelength �N, which corresponds to mode N, is

�N =
2X

N
N = 1,2,3, . . . . �14�

Substituting from Eqs. �13� and �14� in Eq. �12� we get

Vn�x,mT� = 
J0�2�

p
A0 exp�− �mT� sin ��N

X
x��
 . �15�

The argument of Bessel function J0 in Eq. �15� is zero at
x= �qX /N�, q=0,1 ,2 , . . . ,N. At these points, the normal-
ized visibility is equal to 1. In fact, these points are nodal
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Fig. 3 Simulations of the ratio of the vibration amplitude A to the
pattern pitch p, A /p, versus the distance from the zero visibility lo-
cation to the nearest node location, xk, for the first three zero visibili-
ties for a vibration in fundamental mode.

Fig. 4 Image of one end of the used I-beam on its massive base.
May 2008/Vol. 47�5�3
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oints, and their number minus one specifies the vibration
ode.

.2 Vibration Amplitude and Damping Coefficient
Specification

or specification of the vibration amplitude two different
ases are distinguished. In the first case, the minima of the
isibilities are not zero. According to Eq. �15� as the argu-
ent of the Bessel function increases, the normalized vis-

bility decreases and approaches to minimum for x= �2s
1��X /2N� �s=0,1 , . . . ,N−1�. For example, for the first
ode N=1, minimum visibility locates at x=X /2, and for

he second mode N=2, minimum visibilities locate at x
X /4, 3X /4. Thus, in this case each visibility minimum

ocates at halfway between two consecutive regions of Vn
1. Measuring the minimum visibility and substituting x by
/2N in Eq. �15� one gets the amplitude from the following

quation:

A�mT�
p

=
A0 exp �− �mT�

p
=

1

2�
J0

−1��Vn�mT��min� . �16�

Equation �16�, which represents the wave amplitude to
itch ratio versus to the nonzero normalized minimum vis-
bility, is plotted in Fig. 2�b�.

In the second case, there may be one or more zero vis-
bilities between two successive nodes V =1. These zeros
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pattern pasted on the vibrating I-beam. The c
evaluated from the visibility curves in �b�.
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are Bessel function zeros and the corresponding arguments
are known quantities. Thus, from Eq. �15� we get

A�mT� =
CJkp

2� sin ��2�/��xk�mT��
, m = 1,2,3, . . . , �17�

where CJk is the argument for the k’th zero Bessel function,
and xk is the distance of the kth zero visibility to the nearest
location of visibility 1. For example, for a vibration in the
fundamental mode, the first zero visibility appears at x1
= �� /4��k=1,CJ1=2.4048� and Eq. �17� gives A=0.38p. As
A / p increases, the first zero visibility splits into two zero
visibilities, which move in opposite directions toward the
nearest node locations, and for A / p=0.88, a second zero
visibility appears at x2=� /4�k=2,CJ2=5.5201�. For the
further increases of A / p, other zero visibilities appear sym-
metrically with respect to x=� /4. Using Eq. �17�, Fig. 3
presents plots of A / p versus the distance of the zero vis-
ibility to the location of the nearest node for k=1,2 ,3 for a
vibration in the fundamental mode. In Videos 1 and 2 the
vibrations of a sinusoidal pattern for different amplitudes
are simulated in the first and the second vibration modes,
respectively. The curves on the right side are the corre-
sponding normalized visibility distributions. Also, vibra-
tions of sinusoidal patterns for different amplitude to pitch
ratios are simulated in the background videos, which can be
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atched by clicking on “video” on the corresponding cap-
ions.

To evaluate the amplitude damping coefficient the am-
litudes at successive exposure times is recorded, and the
ought for coefficient is derived from the plot of the ampli-
ude versus time.

Experimental Works and Results
he proposed method was applied to the study of in-plane
ibration of an iron I-beam, IPE 140, of length 6.2 m from
sfahan Steel Company. A sinusoidal grating programmed
y a PC and printed on 30 20-
7.5-cm sheets of paper.
he pitch of the printed pattern was 6.2 mm. Then the
heets were pasted on one of the lateral surfaces of the
eam whose ends were firmly fixed on two heavy rigid
ases weighing more than 1 ton. The imaging system was
ikon D200 camera. The beam was put into vibration by
itting it at the middle with a rubber-head hammer. After
ach hit, the beam vibrated for a few tens of seconds and
he camera recorded successive images of the vibrating pat-
ern for data processing. The exposure time for each frame
as 0.5 s and the time interval between two successive

rames was 0.004 s.
Figure 4 shows an image of one end of the I-beam and

he supporting base. The periodic patterns shown in Video
are the images of the pattern in the first, fifth, and ninth

rames. The curves on the right of the patterns show their
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(a)

ideo 1 Simulations of the time-averaged intensity distributions on
sinusoidal pattern vibrating in fundamental mode for different am-

litude to pattern pitch ratios A /p: �a� 0.35, �b� 0.70, and �c� 1.05.
he curves on the right show the corresponding normalized visibili-

ies across the vibrating pattern. The video shows the successive
ecorded frames for different amplitude to pitch ratios �MPEG,
61 KB�. �URL: http://dx.doi.org/10.1117/1.2927460.1�.
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ideo 2 Simulations of the time-averaged intensity distributions on
sinusoidal pattern vibrating in the second mode for different am-

litude to pattern pitch ratios A /p: �a� 0.35, �b� 0.70, and �c� 1.05.
he curves on the right show the corresponding normalized visibili-

ies across the vibrating pattern. The video shows the successive
ecorded frames for different amplitude to pitch ratios �MPEG,
29 KB�. �URL: http://dx.doi.org/10.1117/1.2927460.2�.
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corresponding recorded, smoothed, and normalized visibili-
ties across the images. According to these plots, the beam
had been vibrating in fundamental mode. To improve the
resolution of the recorded images, the symmetry of the vi-
brating pattern is exploited and the images of one half of
the pattern were recorded and processed. For this case, the
images in the first, fifth, and ninth frames, in addition to
their corresponding recorded, smoothed, and normalized
visibilities curves are shown in Video 4. All the recorded
frames and the corresponding visibility curves can be ob-
served in the background videos. To watch the videos click
on “video” on the captions of Videos 3 and 4

Comparing the experimental visibility curves of Videos
3 and 4 with the simulation curves in Video 1, we see that
the increase of the wave amplitude causes the minimum of
the experimental visibility to also move toward the node,
but its value does not approach zero. This is because the
experimental amplitude is a slowly decaying quantity. In
Figs. 5�a� and 5�b� the smoothed and normalized visibilities
at successive frames are shown. Each curve represents the
visibility on the image grating in a 0.5-s averaging time. As
time passes, the amplitude decays and the minimum of the
visibility curve moves toward the center of the beam image
and then moves upward, which is in agreement with the
corresponding simulations shown in Video 1. Figure 5�c�
plots the amplitudes versus time obtained from the visibil-
ity curves as circles. The fitting function A�t�=A0e−�t on the
circles led to the damping coefficient �=0.173 s−1.
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Video 3 Images of a linear sinusoidal pattern pasted on a vibrating
6.2-m-long I-beam �IPE 140� recorded witn an exposure time of
0.05 s at the times �a� 0.5, �b� 2.5, and �c� 4.5 s after the beginning
of the vibration. The corresponding visibility distributions along the
pattern are shown on the right. All the recorded frames and the
corresponding visibilities can be observed in the background “video”
�MPEG, 423 KB�. �URL: http://dx.doi.org/10.1117/1.2927460.3�.
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Video 4 Images of one half of the vibrating I-beam recorded at
exposure times of 0.05 s at times �a� 0.5, �b� 2.5, and �c� 4.5 s after
the beginning of the vibration. The corresponding visibility distribu-
tions along the pattern are shown on the right. The corresponding
“video” can be observed in the background �MPEG, 457 KB�. �URL:
http://dx.doi.org/10.1117/1.2927460.4�.
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Finally, note the following concerning error estimation
nd measurement range. Error calculation for an 8-bits
CD of 3872
2592 pixels shows that the relative ampli-

ude error for cases with zero visibilities is less than 0.02,
ut for cases with nonzero visibilities it is more than 0.04.
he measurement range of the vibration amplitude from the

ower side is limited by the resolution of the imaging op-
ics, which puts a limitation on the spatial frequency of the
ecorded pattern and the sensitivity of CCD to intensity
hange. But from the upper side, practically, there is no
imitation. By choosing a suitable amplitude-to-pattern
itch ratio, a desirable visibility change can be realized on
he image pattern.

Conclusion
he presented technique is a simple, effective, and reliable
ethod for the measurements of vibration characteristic pa-

ameters of structural beams in a wide range of vibration
mplitude. It also seems that the technique can be easily
pplied to larger and more complex structures such as
ridges, buildings, aircraft, etc. To improve the resolution
or very large structures one should use several synchro-
ized cameras.
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