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In this work, the diffraction-based discrimination of two-dimensional (2D) orthogonal separable and nonsepar-
able periodic structures and prediction of the reduced Talbot distances for 2D orthogonal nonseparable periodic
structures are presented. 2D orthogonal periodic structures are defined and classified into separable (multipli-
cative or additive) and nonseparable categories with the aid of a spatial spectrum lattice. For both the separable
and nonseparable cases, the spatial spectra or far-field impulses are 2D orthogonal lattices. We prove that for a 2D
orthogonal separable structure, in addition to the DC impulse, there are other impulses on the coordinate axes. As
a result, if all the spectrum impulses of a structure on the coordinate axes, except for the DC impulse, vanish, we
conclude that the structure is nonseparable. In the second part of this work, using a unified formulation, the near-
field diffraction of the 2D orthogonal separable and nonseparable periodic structures is investigated. In general,
the Talbot distance equals the least common multiple of the individual Talbot distances in the orthogonal di-
rections, say, zt � zlcm. For the 2D orthogonal nonseparable periodic structures having Fourier coefficients only
with odd indices, we have found surprising results. It is shown that for this kind of structure, the Talbot distance
strongly depends on the number theoretic properties of the structure. Depending on the ratio of the structure’s
periods in the orthogonal directions, px

py
, the Talbot distance reduces to zlcm

2 , zlcm
4 , or zlcm

8 . In addition, for the 2D
orthogonal nonseparable sinusoidal grating, we show that, regardless of the value of px

py
, self-images are formed at

distances smaller than the conventional Talbot distances attributed to px and py that we name the reduced Talbot
(RT) distances. Halfway between two adjacent RT distances, the formation of negative self-images with a
complementary amplitude of the self-images is predicted. Halfway between two adjacent self-image and negative-
elf-image, subimages are formed. As another interesting result, we show that the intensity patterns of the sub-
images are 2D multiplicatively separable with halved periods in both directions. Finally, we show that 2D almost
periodic structures with impulses on zone-plate-like concentric circles have self-images under plane wave
illumination. © 2019 Optical Society of America

https://doi.org/10.1364/JOSAA.36.000253

1. INTRODUCTION

Periodic structures, including one-dimensional (1D) and two-
dimensional (2D) gratings, have numerous applications in op-
tics and metrology, such as in spectrometry, shearing interfer-
ometry [1–3], the optical alignment technique, and lithography
[4–6]. Another important measurement technique that serves a
pair of gratings or more is the moiré technique [7–10]. This
technique is used in a variety of ways and for various applica-
tions such as moiré deflectometry, moiré topography, displace-
ment and vibration measurements [11], strain and stress

analysis, wavefront sensing, and 3D displays [12,13]. On
the other hand, diffraction from periodic structures is an inter-
esting topic and is now widely used in optics. For more than
half a century, the physics of diffraction from 1D periodic struc-
tures has attracted much attention and has had many studies
allocated to it [14–31]. But compared with the 1D case, few
studies have been devoted to diffraction from 2D periodic
structures [32–36].

2D orthogonal periodic structures can be classified into sepa-
rable (including multiplicative and additive) and nonseparable
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cases. For both separable and nonseparable cases, the spatial spec-
tra of the structures are 2D orthogonal lattices. In this work, we
show that the separability of the structure into two distinct 1D
structures can be recognized from the far-field diffraction pattern
of a given periodic structure that shows the spatial spectrum. It is
shown that, for a 2D orthogonal separable structure, if the DC
impulse exists, then there are other impulses on the coordinate
axes. Accordingly, we deduce that if all the far-field impulses on
the coordinate axes, excluding the DC one, vanish, then the
structure is nonseparable. But the converse of the above state-
ments is not necessarily true, meaning that when in addition
to the DC impulse there are other impulses on the coordinate
axes, then both separable and nonseparable cases are possible. In
such a situation, again the separability of the structure can be
determined from the investigation of the resulting spatial spec-
trum. We have recently proved that for a multiplicatively sepa-
rable (MS) structure, its far-field diffraction pattern remains
separable too [35]. Similarly, for an additively separable (AS)
structure, its far-field diffraction pattern is also AS into two
1D spectra. Thus for the mentioned situation, the separability
of the spatial spectrum pattern into two 1D structures deter-
mines the separability of the structure. Investigation of various
behaviors of the near-field diffractions from separable and non-
separable structures also has some significant value in the field.
In the second part of this work, we briefly present a unified for-
mulation for the Talbot effect of 2D orthogonal separable and
nonseparable periodic structures. As an example, near-field dif-
fraction from a 2D orthogonal nonseparable sinusoidal grating is
formulated, and more details are presented. It is worth mention-
ing that the case of MS periodic structures was already investi-
gated with the aid of the contrast variation method in [35]. In
that work, for a 2DMS sinusoidal structure, it was predicted that
there would be additional self-images in addition to the Talbot
images located at the least common multiple (LCM) of each of
the individual 1D Talbot distances. Also, a study on Talbot im-
ages and the Talbot spectra of a 2D orthogonal periodic structure
was presented in [34]. Here we show that for a 2D orthogonal
nonseparable sinusoidal grating, its self-images are formed at the
RT distances, which are smaller than the conventional Talbot
distances corresponding to the periods in the x and y directions.
As well as the halfway distance between two adjacent RTs, neg-
ative self-image formation with the complementary amplitude of
the self-images is predicted. Most importantly, half-period 2D
MS subimages are formed halfway between an adjacent self-
image and a negative self-image.

In addition, for a 2D orthogonal nonseparable periodic
structure having Fourier coefficients with only odd indices,
we show that the Talbot distance depends strongly on the
number theoretic properties of the structure. We show both
theoretically and through computational simulations that, de-
pending on the ratio of the structure’s periods in the orthogonal
directions, px

py
, the Talbot distance reduces to z lcm

2 , z lcm
4 , or z lcm

8 .

Finally, in Appendix A, it is shown that 2D almost periodic
structures having impulses on zone-plate-like concentric circles
form Talbot images, and as a typical example, we investigate the
near-field diffraction from an octagonal almost periodic pure
amplitude sinusoidal structure.

2. 2D ORTHOGONAL SEPARABLE AND
NONSEPARABLE PERIODIC STRUCTURES

Now let us define 2D orthogonal separable and nonseparable
periodic structures by the spatial spectrum concept. We define
a 2D orthogonal periodic structure by a transmission function
t�x, y� that is a twofold periodic function in R2. It means that
t�x, y� is periodic in both the x and y directions with periods px
and py, respectively [9]:

t�x � px , y� � t�x, y� and t�x, y� py� � t�x, y�,
for all �x, y� ∈ R2:

Then t�x, y� can be expanded into a 2D Fourier series [9]:

t�x, y� �
X�∞

m, n�−∞
tm,n exp

�
2πi

�
m
px
x � n

py
y
��

, (1)

where tm,n indicate Fourier coefficients. The spatial spectrum of
the structure can be obtained by taking a 2D Fourier transform.
Using 2D impulse symbol δ�ξ, η� one can write the spatial
spectrum of the structure as

T �ξ, η� �
X�∞

m, n�−∞
tm,nδ�ξ − mf x , η − nf y�, (2)

where f x � 1
px
and f y � 1

py
are the fundamental frequencies of

the structure in the x and y directions, respectively. It indicates a
2D amplitude-modulated impulse comb in the spectral do-
main. The resulting impulse comb, or, equally, the spectrum
pattern, is a 2D orthogonal lattice, where �m, n�th impulse
is located at �mf x , nf y� with amplitude tm,n. Consider two
linearly independent vectors V1 and V2 in R2. The set of
all points indicated by the end of vectors Vmn �
mV1 � nV2,m, n ∈ Z, is called a 2D lattice that we show
by L. For the case V1 and V2 to be orthogonal, L is a 2D
orthogonal lattice. A structure is 2D orthogonal periodic when
its spatial spectrum is a 2D orthogonal lattice. As the far-field
diffraction of a given structure is equal to its spatial spectrum,
each 2D orthogonal lattice at far field corresponds to a 2D
orthogonal periodic structure. 2D orthogonal periodic struc-
tures can be divided in two categories of separable and nonse-
parable. In this regard, the direction of coordinate system xa€ y
is most important and is uniquely chosen so that in the spectral
domain corresponding coordinate system ξ − η to be parallel to
the sides of the impulse lattice (see Fig. 1).

(a) (b)

Fig. 1. (a) Schematic plot of a typical 2D orthogonal periodic struc-
ture in the spatial domain, and (b) its impulse lattice in the spectral
domain.
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Now we determine separability or nonseparability of a given
structure into two distinct 1D structures from its spectrum. A
structure is called 2D orthogonal MS or AS periodic structure
when its transmission function, t�x, y�, can be written as the
product or addition of two 1D periodic functions, tx�x� and
ty�y�, respectively:

tMS�x, y� � tx�x�ty�y�, tAS�x, y� � tx�x� � ty�y�: (3)

In the other situations, the structure will be nonseparable. As
tx�x� and ty�y� are periodic functions, their 1D Fourier
transforms can be written, respectively, by

T x�ξ� �
X�∞

m�−∞
txmδ�ξ − mf x�,

T y�η� �
X�∞

n�−∞
tynδ�η − nf y�, (4)

where txm and tyn are Fourier coefficients. Now, using separable
product theorem [9,35], the spectra of tMS and tAS are
obtained as

TMS�ξ, η� � tx0ty0δ�ξ�δ�η� � ty0δ�η�
X
m≠0

txmδ�ξ − mf x�

� tx0δ�ξ�
X
n≠0

tynδ�η − nf y�

�
X
m, n≠0

txmtynδ�ξ − mf x�δ�η − nf y�, (5)

T AS�ξ,η�� �tx0� ty0�δ�ξ�δ�η�
�δ�η�

X
m≠0

txmδ�ξ−mf x��δ�ξ�
X
n≠0

tynδ�η−nf y�:

(6)

Obviously, for both MS and AS structures, if there exists a DC
term, say, tx0 ≠ 0 and ty0 ≠ 0, in addition to the DC impulse
(first term) there are other impulses on the coordinate axes (sec-
ond and third terms). The contrapositive of this statement is “if
all of the far-field impulses on the coordinate axes excluding the
DC one vanish, then the structure is nonseparable.” Here, to
clarify the subject, we examine three 2D orthogonal MS, AS,
and (multiplicatively and additively) nonseparable sinusoidal
amplitude gratings in the x and y directions, respectively:

tMS�x, y� �
1

2

�
1� αx cos

�
2πx
px

��
×
1

2

�
1� αy cos

�
2πx
py

��
,

(7)

tAS�x, y� �
1

4

�
1� αx cos

�
2πx
px

��
� 1

4

�
1� αy cos

�
2πy
py

��
,

(8)

tNS�x, y� �
1

2

�
1� α cos

�
2πx
px

�
cos

�
2πy
py

��
, (9)

where α is a real parameter, and NS stands for the nonseparable
structure. Figure 2 shows these structures and their correspond-
ing spectra in the frequency domain.

3. TALBOT EFFECT OF 2D ORTHOGONAL
PERIODIC STRUCTURES

Here we consider the near-field diffraction from a 2D orthogo-
nal periodic structure defined previously. By illuminating the
structure with a coherent uniform light beam, according to
Eq. (1), the field distribution immediately after the structure
can be written by

u0�x, y� �
X�∞

m, n�−∞
tm,n exp�2πi�mf xx � nf yy��: (10)

The corresponding spatial spectrum is

U 0�ξ, η� �
X�∞

m, n�−∞
tm,nδ�ξ − mf x , η − nf y�: (11)

By multiplying this expression to the free space transfer
function in Fresnel approximation [37],

H �ξ, η� � H 0 exp�−iπλz�ξ2 � η2��, (12)

we can get the spatial spectrum at the output plane at distance z
from the structure:

Uz�ξ, η� �
X�∞

m, n�−∞
tm,n exp�−iπλz�ξ2 � η2��

× δ�ξ − mf x , η − nf y�, (13)

where, for convenience, we ignored H 0 � eikz . By taking 2D
inverse Fourier transform from Eq. (13), one can obtain
amplitude field distribution at distance z from the structure

uz�x, y� �
X�∞

m, n�−∞
tm,n exp�2πi�mf xx � nf yy��

× exp�−iπλz�m2f 2
x � n2f 2

y ��: (14)

By defining ztx � 2
λf 2

x
and zty � 2

λf 2
y
as the Talbot distances

attributed to the structure periods in the x and y directions,
Eq. (14) can be written as

uz�x, y� �
X�∞

m, n�−∞
tm,n exp�2πi�mf xx � nf yy��

× exp
�
−i2πz

�
m2

ztx
� n2

zty

��
: (15)

1
0.8
0.6
0.4

0.2
0

Fig. 2. Two typical 1D sinusoidal structures (having DC term) in
the x and y directions with different periods, their product, their sum-
mation, and a typical 2D orthogonal (multiplicatively and additively)
nonseparable sinusoidal structure (first row, left to right); their corre-
sponding spectra in the frequency domain (second row). The gray scale
is for all of images.
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Assuming ztx
zty

� �pxpy�
2 to be a rational number, then we can write
ztx
zty

�
�
px
py

�
2

� k
l
, (16)

where l and k are relatively prime positive integer numbers. Let
us now define z lcm � l ztx � kzty as the 2D structure Talbot
distance that is the LCM of ztx and zty. Accordingly, we can
rewrite Eq. (15) as

uz�x, y� �
X�∞

m, n�−∞
tm,n exp�2πi�mf xx � nf yy��

× exp
�
−2πi

�
z

z lcm

�
�lm2 � kn2�

�
: (17)

As �lm2 � kn2� is always an integer number, at distances
equal to integer multiples of z lcm, namely, zq � qz lcm,
q � 1, 2, 3,…, the light beam amplitude exactly recovers its
initial shape:

uz�zq �x, y� � u0�x, y�: (18)

Then, for any 2D orthogonal periodic structure, consisting of
both separable and nonseparable cases, at these distances
self-images are formed.

Let us now consider a special case in which px �
ffiffiffiqp py,

where q � 1, 2, 3,…. Using Eq. (16), we get ztxzty � q. For such

a structure, z lcm � ztx � 2p2x
λ , and therefore the Talbot distance

does not depend on py. A comprehensive interpretation in the
spectral domain for this effect is presented in Section C of
Appendix A.

In the rest of the paper, for simplicity we consider a sinus-
oidal amplitude 2D orthogonal NS structure defined by
Eq. (9). It worth mentioning that the case of MS periodic struc-
tures was already investigated by the aid of contrast variation
method in [35]. In that work, for a 2D MS sinusoidal structure
defined in Eq. (7) (see Fig. 2, first row, third column), it has
been predicted that there are additional self-images, in addition
to the Talbot images located at the LCM of each of the indi-
vidual 1D Talbot distances, z lcm. Also, it was shown that the
diffraction pattern of a 2D MS sinusoidal structure depends
strongly on the ratio square of 1D structures’ periods in the
x and y directions.

4. RT DISTANCES FOR 2D ORTHOGONAL
NONSEPARABLE STRUCTURES

A. Nonseparable Sinusoidal Gratings

Now let us come back to Eq. (9); by illuminating such a 2D
nonseparable sinusoidal grating by a coherent uniform light
beam, the transmitted amplitude is

u0�x, y� �
1

2
�1� α cos�2πf xx� cos�2πf yx��: (19)

It can be rewritten in an exponential form as

u0�x, y� � t0,0 �
X

m, n��1

tm,n exp�2πi�mf xx � nf yy��, (20)

where t0,0 � 1
2 and for the other four terms, tm,n � α

8. By com-
parison with Eq. (10) and using Eq. (17), the complex ampli-
tude of the light beam after propagation can be obtained as

uz�x, y� � t0,0 � exp

�
−i2π

�
z

z lcm

�
�l � k�

�

×
X

m, n��1

tm,n exp�2πi�mf xx � nf yy��: (21)

Let us define a new distance parameter zRT by

zRT � z lcm
l � k

� ztxzty
ztx � zty

: (22)

As zRT is smaller than both ztx and zty, we call it the RT dis-
tance. By replacing zRT in Eq. (21) and rewriting it in cosine
form we have

uz�x, y� �
1

2

�
1� αe−i2π� z

zRT
� cos

�
2πx
px

�
cos

�
2πy
py

��
: (23)

By comparing the amplitude immediately after the grating,
Eq. (19), and the diffracted one, Eq. (23), it is evident that
at the distances equal to integer multiples of zRT, namely, at
zq � qzRT, q � 1, 2, 3,…, the light beam amplitude fully
recovers its initial shape, uz�zq �x, y� � u0�x, y�. Halfway be-
tween two successive RT distances, zH ,q � �q − 1

2�zRT, which
we name reduced half-Talbot (RHT) distances, we have

uz�zH ,q
�x, y� � 1

2

�
1 − α cos

�
2πx
px

�
cos

�
2πy
py

��
: (24)

Here again, by comparing equations Eqs. (19) and (24), it can
be concluded that

uz�zH ,q
�x, y� � u0

�
x −

px
2
, y
�

� u0

�
x, y −

py
2

�
: (25)

It means that the resulting diffracted amplitude pattern can be
considered the same as the transmitted amplitude for the gra-
ting with a half-period shift in the x or y direction (see Fig. 3).
Moreover, halfway between two successive RHT distances,
we call it reduced quarter-Talbot (RQT) distances, zQ ,n �
�n − 1

2� zRT2 , n � 1, 2, 3,…, and we have

uz�zQ ,n
�x, y� � 1

2

�
1� i�−1�nα cos

�
2πx
px

�
cos

�
2πy
py

��
:

(26)

Now, the resulting intensity pattern is given by

I z�zQ ,n
�x, y� � 1

4
�

�
1� cos

�
2πx
px∕2

��
×
�
1� cos

�
2πy
py∕2

��
:

(27)

Focusing on this equation, we see that at the RQT distances,
the resulting intensity pattern can be considered as a 2D MS
pattern after subtracting the background term (see Fig. 3).
Second, despite the fact that the resulting intensity pattern
periods in both the x and y directions are halved, still the phase
map periods remain unchanged. By defining g�x, y� �
α cos�2πxpx � cos�

2πy
py
� and replacing it in Eq. (23) we have

uz�x, y� �
1

2

�
1� e−i2π� z

zRT
�g�x, y�

�
: (28)

Now, intensity and phase distributions in an arbitrary z can be
calculated, respectively, by
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I z�x, y� �
1

4

�
1� g�x, y�2 � 2g�x, y� cos

�
2πz
zRT

��
, (29)

φz�x, y� � tan−1

2
64 g�x, y� sin

�
2πz
zRT

�

1� g�x, y� cos
�
2πz
zRT

�
3
75: (30)

Using Eq. (29) and the Michelson contrast definition,

CI �
Imax − Imin

Imax � Imin

: (31)

We can calculate contrast variation of the intensity pattern as a
function of z. Similarly, we can define phase contrast by

Cφ � φmax − φmin
π
2

: (32)

In Fig. 4, the contrast variation of the intensity pattern and
phase contrast are plotted in a zRT distance. In the background
visualization of Fig. 3, evolution of the diffraction patterns and
contrast curves of typical 2D sinusoidal separable and nonse-
parable gratings are illustrated in a range of a z lcm∕2 distance
(Visualization 1). The phase contrast curve gets the form of a

1D reversed Dirac comb when α tends toward 1 (see Fig. 4 and
Visualization 2).

As another way to explain this odd result, the formation of
self-images at a distance smaller than both ztx and ztx , we add
Appendix A to the work. We know that all impulses of a 2D
nonseparable sinusoidal grating except the DC one (at the
spectral domain) locate on a circle with a radius of f , where

f 2 � f 2
x � f 2

y ; (33)

see the fifth column of Fig. 2. On the other hand, it can be
shown that for a given 2D structure having impulses only
on a circle with radius f , the Talbot distance is given by
zt � 2

λf 2; see Appendix A. Multiplying both sides of
Eq. (33) by λ

2 we obtain

1

zt
� 1

ztx
� 1

zty
, (34)

which easily leads to the RT distance, presented in Eq. (22).
It is worth noting that as illustrated in the fourth column of

Fig. 2, for the AS case, the non-DC impulses are not necessarily
located over a circle. Therefore, it is not expected that the
above-mentioned reduction for the Talbot distances occur
for these structures.

B. 2D Orthogonal Nonseparable Structure Having
Fourier Coefficients Only with Odd Indices

Here we investigate the near-field diffraction from 2D orthogo-
nal nonseparable periodic structures having Fourier coefficients
only with odd indices except the DC term. In this regard, we
consider the following form for the transmittance:

u0�x, y� � t0,0 �
X�∞

m�−∞
odd

X�∞

n�−∞
odd

tm,ne
2πi�mf xx�nf yy�, (35)

where “odd”s under the summations indicate that m and n are
odd numbers. As none of the summations includes index 0,
then tm,0 � t0,n � 0 in double summation. It means that in
the far field, all the impulses on the coordinate axes, excluding
the DC one, vanish; therefore the structure presented by

(a) (b)

(c) (d)

(e) (f)

Fig. 3. Typical near-field intensity patterns of a 2D nonseparable
sinusoidal grating with px � 0.3 mm and py � 0.5 mm at the
(a) RT, (b) RHT, (c) RQT with an even n, and (d) RQT with an
odd n, distances. (e) and (f ) are the corresponding phase maps of
(c) and (d), respectively (see Visualization 1).
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Fig. 4. Variation of intensity and phase contrasts for the near-field
diffraction patterns of a 2D nonseparable sinusoidal grating in terms of
z for three different values of α (see Visualization 2).
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Eq. (35) is necessarily nonseparable. Using Eq. (14), amplitude
field distribution at distance z from the structure is given by

uz�x, y� � t0,0 �
X�∞

m�−∞
odd

×
X�∞

n�−∞
odd

tm,ne
−2πi

�
z

zlcm

�
�lm2�kn2�

e2πi�mf xx�nf yy�: (36)

Comparing Eqs. (35) and (36), here again at distances equal to
integer multiples of z lcm, namely, zq � qz lcm, q � 1, 2, 3,…,
the light beam amplitude exactly recovers its initial form. Since
the above expansions include only coefficients with odd indices,
here some surprising results are obtained in some specific
conditions.

Since l and k are relatively prime numbers, then both of
them cannot be simultaneously even. There are two possibil-
ities: one of l and k is odd and other one is even, or both of
them are odd numbers. In the first case, �lm2 � kn2� is an odd
integer number, and therefore zt � z lcm. In the second case,
where both l and k are odd integer numbers, �lm2 � kn2�
is an even integer number, and therefore zt � z lcm

2 can be re-
garded as the Talbot distance of the structure. This means that
the Talbot distance halves. In the second case, some additional
interesting facts can be revealed. From elementary number
theory, it is known that the square of an odd integer number
can be written in the form of 8q � 1, where q � 0, 1, 2, 3,….
Then we can write m2 � 8m 0 � 1 and n2 � 8n 0 � 1, and
therefore,

�lm2 � kn2� � 8�lm 0 � kn 0� � �l � k�: (37)

Now let us follow the case if �l � k� has a common factor with
number 8. We will show that such a condition can be fulfilled
by a suitable choice of px and py. The set of odd integer
numbers can be classified into the following four groups:

�G1�8q � 1, �G2�8q � 3, �G3�8q � 5,

�G4�8q � 7, (38)

where in all of groups q � 0, 1, 2, 3,…. Now we consider all
possible combinations of l � k from the introduced groups. By
the aid of the following 10 different combinations of the intro-
duced groups, the number of theoretic properties of l � k can
be determined. For the values of l � k, there are 10 different
cases, and we show these 10 cases by

�G1,G1�, �G1,G2�, �G1,G3�, �G1,G4�, �G2,G2�,
�G2,G3�, �G2,G4�, �G3,G3�, �G3,G4�, �G4,G4�, (39)

where, for instance, �G2,G3� means that one of l or k belongs
to the group G2 and the other one belongs to G3. In fact, all
these 10 combinations can be categorized into the following
three categories:

First category∶f�G1,G1�, �G1,G3�, �G2,G2�,
�G2,G4�, �G3,G3�, �G4,G4�g,

Second category∶f�G1,G2�, �G3,G4�g,
Third category∶f�G1,G4�, �G2,G3�g: (40)

The common factors of �l � k� with number 8 for the first,
second, and third categories, are equal to 2, 4, and 8, respec-
tively. Therefore, the Talbot distance for the first, second, and
third categories are zt � z lcm

2 , zt � z lcm
4 , and zt � z lcm

8 , respec-
tively. These results show that self-images of the checker
gratings strongly depend on the values of l and k, and therefore
on the ratio of their periods in the x and y directions.

In the following, we introduce two typical 2D orthogonal
nonseparable periodic structures having Fourier coefficients
with only odd indices. To construct such structures, we utilize
two well-known square and triangle wave functions varying
between −1 and 1; see [38].

Their Fourier expansion of square and triangle wave
functions with period of p are given by

Sq�x; p� �
X�∞

m�1
odd

4

mπ
sin

�
2mπx
p

�
(41)

and

Tr�x, p� �
X�∞

m�1
odd

8

�mπ�2 cos

�
2mπx
p

�
, (42)

respectively. Using these functions, the two following 2D
orthogonal nonseparable structures can be constructed:

t�x, y� � 1

2
�1� Sq�x; px�Sq�y; py��, (43)

t�x, y� � 1

2
�1� Tr�x; px�Tr�y; py��, (44)

where px and py are the structures’ periods in the x and y
directions, respectively. Considering Eqs. (41) and (42), these
transmission functions are in the form of Eq. (35). In fact,
Eq. (43) presents a checker grating. To realize the presented
results, in the following we investigate self-imaging of the
checker gratings with a different ratio of periods in the orthogo-
nal directions. For each specified category, we present an exam-
ple to show the predicted RT distances and additional results.

C. Diffraction from a Checker Grating As a 2D
Orthogonal Nonseparable Periodic Structure

Here we investigate near-field diffraction from a checker grating
as a typical example of 2D orthogonal nonseparable periodic
structures having Fourier coefficients only with odd indices.
In Fig. 5, a checker grating with nonequal periods in the x
and y directions is illustrated. We describe a checker grating
by the following transmission function:

t�x, y� � 1

2

	
1� sign

�
sin

�
2πx
px

�
sin

�
2πy
py

��

, (45)

where “sign” indicates the sign function, which extracts the sign
of a real number. This expression for a checker grating makes it
easy to use in computational software such as MATLAB.
Comparing Eqs. (45) and (9), one can consider this transmis-
sion function as the binary equivalent of 2D nonseparable
sinusoidal structure defined by Eq. (9). This transmission
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function and therefore the field distribution immediately after
the grating can be written by the following Fourier expansion:

u0�x, y� �
1

2
�

X�∞

m�1
odd

X�∞

n�1
odd

8

mnπ2
sin

�
2πx
px

�
sin

�
2πy
py

�
: (46)

Using Eq. (36), the amplitude field distribution at distance z
from the grating is given by

uz�x,y��
1

2

�
X�∞

m�1
odd

X�∞

n�1
odd

8

mnπ2
e
−2πi

�
z

zlcm

�
�lm2�kn2�

sin

�
2πx
px

�
sin

�
2πy
py

�
,

(47)

In Fig. 6, the near-field diffraction patterns of a checker grating
with an even value l and odd value of k at different distances
from the grating are illustrated. As can be seen, the self-images
of the checker grating at the Talbot and half-Talbot distances
are complementary to each other; see Figs. 6(a) and 6(b).
Similar to the 1D Ronchi grating case [38], at the quarter-
Talbot distances, zt

4 and 3zt
4 , uniform intensity patterns form;

see Figs. 6(c) and 6(d). The corresponding phase patterns have
checker profiles in which they are the negative of each other
[Figs. 6(e) and 6(f )].

Figure 7 shows the near-field diffraction patterns of a
checker grating with odd values l and k belonging into the first
category introduced in Eq. (40)—say, zt � z lcm

2 —at different
distances from the grating. The same as in the case of

Fig. 5. Typical checker grating having nonequal periods in the x and
y directions. A unit cell of the grating is shown by the red rectangle.
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Fig. 6. Near-field diffraction patterns of a checker grating with
px � 0.3 mm, py � 0.2 mm, and the respective values of l � 4
and k � 9. Intensity pattern immediately after the grating and
(a) at the Talbot distance z � zt � z lcm, (b) at the half-Talbot dis-
tance z � zt

2 , (c) at the quarter-Talbot distance z � zt
4 , and (d) at

the quarter-Talbot distance z � 3zt
4 ; respective phase patterns at the

quarter-Talbot distances (e) z � zt
4 and (f ) z � 3zt

4 .
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Fig. 7. Near-field diffraction patterns of a checker grating having
px � 0.5 mm, py � 0.3 mm, and the respective values of l � 9
and k � 25; intensity pattern immediately after the grating and
(a) at the Talbot distance z � zt � z lcm

2 , (b) at the half-Talbot distance
z � zt

2 , (c) at the quarter-Talbot distance z � zt
4 , and (d) at the quarter-

Talbot distance z � 3zt
4 ; corresponding phase patterns at the quarter-

Talbot distances (e) z � zt
4 and (f ) z � 3zt

4 .
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Fig. 6, here the respective self-images at the Talbot and half-
Talbot distances are complementary to each other; at the quar-
ter-Talbot distances uniform intensity patterns form, and the
phase patterns have checker profiles in which they are the
negative of each other.

Figure 8 presents the near-field diffraction patterns of a
checker grating with odd values l and k belonging into the sec-
ond category introduced in Eq. (40)—say, zt � z lcm

4 —at differ-
ent distances from the grating. As is apparent, the self-images of
the structure at the respective Talbot and half-Talbot distances
are complementary to each other; see Figs. 8(a) and 8(b). At
both quarter-Talbot distances, zt

4 and 3zt
4 , after subtracting

the background intensity, a 2D MS periodic intensity pattern
is formed; see Figs. 6(c) and 6(d). Here, the period of the in-
tensity patterns is halved. The corresponding phase patterns
have three-level profiles in which they are the negative of each
other [Figs. 8(e) and 8(f )]. Unlike the respective intensity pro-
files, here the period of the phase patterns is equal to the period
of the structure.

Figure 9 presents the same patterns as Fig. 8 for a checker
grating belonging to the third category introduced in Eq. (40)—
say, zt � z lcm

8 —at different distances from the grating. As is
shown in Figs. 9(a) and 9(b), here the diffraction patterns at the

respective Talbot and half-Talbot distances are not similar.
Here, at the half-Talbot distances, the intensity patterns are
checker-like patterns in which the filling factor is decreased.
Therefore the value of intensity over the bright areas is larger
than its value over the self-image planes. This feature can be
found in applications in lithography, optical manipulation,
etc. At the quarter-Talbot distances, both the intensity and
phase profiles are the same period of the structure, but they
have elaborate structures; see Figs. 9(c)–9(f ). The intensity pat-
terns at the zt

4
and 3zt

4
are the same, but their phase profiles are

the negative of each other’s.

5. CONCLUSION

In this work, based on the spatial spectrum of a 2D periodic
structure, its orthogonality and separability into two 1D struc-
tures were determined. For the first time, for a 2D orthogonal
nonseparable grating with sinusoidal profile, the self-images,
negative self-images, and subimages formation conditions
and their characterizations were presented. Also, for the 2D
orthogonal nonseparable periodic structures having Fourier co-
efficients only with odd indices, it was shown that the Talbot
distance strongly depends on the number theoretic properties
of the structure.
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8 , (b) at the half-Talbot distance z � zt
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In Appendix A of the work, formation of self-images for 2D
almost periodic structures having impulses on zone-plate-like
concentric circles at the spectral domain is predicted, and
the Talbot distance is determined in terms of the first circle’s
radius.

The near-field diffraction from 2D structures separable in
the polar coordinates has recently found interesting applica-
tions [39–42]. It seems that the diffraction from 2D structures
that are periodic along both radial and azimuthal directions also
leads to new achievements.

APPENDIX A

A. Talbot Effect of 2D Almost Periodic Structures

Here we consider the near-field diffraction from 2D almost
periodic structures and discover a sufficient condition for
the almost periodic structures in which they have self-images
under coherent plane wave illumination. A 2D structure is
almost periodic when it has a 2D almost periodic transmission
function. The Fourier series representation of an almost
periodic transmission function t�x, y� is [9]

t�x, y� �
X∞
n�0

tn exp�i2π ~f n: ~r�

� t0 �
X∞
n�1

tn exp�i2π�f nxx � f nyy��, (A1)

where ~f n � �fnx , fny� indicates an arbitrary point in the
spectrum domain and ~r � �x, y�, and n � 0 corresponds to
the DC term with ~f 0 � �f 0x , f 0y� � �0, 0� located at the
spectrum origin. By illuminating the structure with a coherent
uniform light beam, the field distribution immediately after the
structure is u0�x, y� � t�x, y�, and the corresponding spatial
spectrum is

U 0�ξ, η� �
X∞
n�0

tnδ�ξ − f nx , η − f ny�: (A2)

Multiplying this expression to the free space transfer function,
H �ξ, η� � H 0 exp�−iπλz�ξ2 � η2��, at a distance z from the
structure, the spatial spectrum is given by

Uz�ξ, η� �
X∞
n�0

tn exp�−iπλz�ξ2 � η2�� × δ�ξ − f nx , η − f ny�:

(A3)

The amplitude field distribution at z obtains by taking the 2D
inverse Fourier transform of Eq. (A3):

uz�x, y� � t0 �
X�∞

n�1

tn exp�i2π�f nxx � f nyy��

× exp�−iπλz�f 2
nx � f 2

ny��: (A4)

When the set of impulses in the spatial spectrum domain forms
a 2D orthogonal lattice—say, ~f m,n � �mf x , nf y�—the struc-
tures is a 2D orthogonal periodic structure, which is discussed
in the third section of the paper. Here we propose another ar-
rangement of impulses. Suppose that all of impulses are located
on a circle around the spectrum origin with radius f , except the
DC one. Therefore, we have f 2

nx � f 2
ny � f 2, and Eq. (A4)

can be rewritten as follows:

uz�x, y� � t0 � e−i2π
z
zt

X�∞

n�1

tne
i2π�f nxx�f nyy�, (A5)

where zt � 2
λf 2 is the structure’s Talbot distance. Comparing

Eq. (A5) with Eq. (A1), one can deduce that at distances equal
to integer multiples of zt , say, zq � qzt , q � 1, 2, 3,…, the
light beam amplitude exactly recovers its initial shape.

B. Diffraction from Pure Amplitude Octagonal
Sinusoidal Structure

To clarify the matter, we construct a structure so that its spec-
trum impulses are located at the center and vertices of an oc-
tagon on the spectral domain; see Fig. 10(b). Considering
t0 � 1

2 and the other eight coefficients tn � 1
8 in Eq. (A1),

we obtain

t�x, y� � 1

2
�1� g�x, y��, (A6)

in which

g�x, y� � α

4
cos�2πf x� � α

4
cos�2πf y�

� α

4
cos�

ffiffiffi
2

p
πf �x � y�� � α

4
cos�

ffiffiffi
2

p
πf �x − y��:

(A7)

In Fig. 10(a), this transmission function is depicted. Using
Eq. (A5), the complex amplitude of diffracted light is

uz�x, y� �
1

2

h
1� e−i2π

z
zt g�x, y�

i
: (A8)

Using this result, the diffracted intensity patterns at z � zt and
z � zt

2 are illustrated in Figs. 10(c) and 10(d), respectively. The
intensity patterns at the Talbot and half-Talbot distances are
almost the negative of each other. In the background movie
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Fig. 10. Pure amplitude octagonal sinusoidal structure.
(a) Transmission function, (b) its impulse-comb in the spectral do-
main; (c) the intensity patterns immediately after the structure and
at the Talbot distances; and (d) the intensity patterns at the half-
Talbot distances; see Visualization 3.
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of Fig. 10, Visualization 3, the diffraction patterns from a pure
amplitude octagonal sinusoidal structure, under propagation in
a range of a zt (left) and the corresponding phase maps (right)
are presented. Using the definitions of Eqs. (31) and (32), their
corresponding contrast curves are calculated and shown in the
following rows. The fundamental spatial frequency of the
structure is f � 10 mm−1 and α � 0.95.

C. 2D Almost Periodic Structures Having Impulses
Located on Zone-Plate-Like Concentric Circles

We consider a generalized case in which the spectral impulses of
the structure are located on zone-plate-like concentric circles.
In this case, all impulses, excluding the DC one, locate on a
family of concentric circles around the spectrum origin so that
the radius of the mth circle, f m, is proportional to

ffiffiffiffi
m

p
, say,

f m � ffiffiffiffi
m

p
f , where f is the radius of the central circle or

equally is the fundamental spatial frequency of the structure.
We show the location of the nth impulse on the mth spectral
circle by ~fmn � �fmnx , fmny�; then

f 2
mnx � f 2

mny � mf 2: (A9)

This equation implies that this family of concentric circles con-
structs a zone plate in the spectrum domain. Strictly speaking,
in this case Eq. (A1) gets the following form:

u0�x, y� � t00 �
X∞
m�1

XNm

n�1

tmn exp�i2π ~fmn: ~r�

� t00 �
X∞
m�1

XNm

n�1

tmn exp�i2π�f mnxx � f mnyy��,

(A10)

where Nm is the number of impulses on the mth spectrum
circle. In a similar way, the complex amplitude of the diffracted
light at distance z from the structure is obtained as follows:

uz�x, y� � t00 �
X∞
m�1

XNm

n�1

tmn exp�i2π�f mnxx � f mnyy��

× exp�−iπλz�f 2
mnx � f 2

mny��:
(A11)

Substituting Eq. (A9) in Eq. (A11), we get

uz�x, y� � t00 �
X∞
m�1

XNm

n�1

tmne
i2π�f mnxx�f mnyy�e−i2mπ

z
zt , (A12)

where zt � 2
λf 2 is the Talbot distance. Comparing Eq. (A12)

with Eq. (A10), we see that at distances equal to integer
multiples of zt , say, zq � qzt , q � 1, 2, 3,…, the light beam
amplitude exactly recovers its initial shape.

As an interesting example, we come back again to a 2D
orthogonal periodic structure. Impulses of this structure in
the spectrum domain form a 2D orthogonal lattice in which
�m, n�th impulse can be specified by

~fmn � mf x x̂ � nf y ŷ, (A13a)

f 2
m,n � �mf x�2 � �nf y�2, (A13b)

where x̂ and ŷ are the Cartesian unit vectors, and f x � 1
px
and

f y � 1
py
are the fundamental frequencies of the structure in the

x and y directions, respectively. Here we determine a sufficient
condition for px and py of the structure so that all impulses of
the structure locate on zone-plate-like concentric circles. If
px �

ffiffiffiqp py, where q � 1, 2, 3,…, then f y �
ffiffiffiqp f x . Now,

substituting f y �
ffiffiffiqp f x in Eq. (A13b), we get

f m,n �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 � qn2

q
f x �

ffiffiffi
k

p
f x , (A14)

where k � m2 � qn2 is obviously a positive integer. In this
case, all impulses of the structure are located on zone-plate-like
concentric circles, and therefore for this structure the Talbot
distance is independent of py, say, zt � ztx � 2p2x

λ .
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