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Abstract
The use of moiré pattern of superimposition of linear forked gratings (LFGs) and Fresnel zone
plates (ZPs) has already been reported for study of different physical effects. In spite of a
considerable number of applications, there is no comprehensive formulation for this kind of
moiré pattern. In this work, we introduce a new family of ZPs containing topological defects that
we named defected ZP (DZP) and we present a very simple, uniform, and comprehensive
formulation for the moiré pattern of superimposition of two LFGs, two DZPs, and
superimposition of an LFG on a DZP, using the reciprocal vector approach. For the case of the
two LFGs superimposition, we show that the resulting moiré pattern has a starlike shape or is a
large-scale LFG pattern. In the case in which two DZPs are superimposed, we show that the
resulting moiré pattern has three general forms: large-scale DZP pattern, starlike pattern, and
large-scale LFG pattern. In the superimposition of an LFG on a DZP, in special conditions a new
spiral ZP having a topological defect is produced in which its defect number related to the
superimposed gratings structures. The presented formulation has potential applications in
singular optics measurements.

Keywords: moiré pattern, fringe analysis, forked gratings, Fresnel zone plates, spiral zone plates,
topological defects, singular optics

1. Introduction

A moiré pattern is an ancient well-known phenomenon which
occurs when two planer periodic or pseudo-periodic struc-
tures of equal or nearly equal periods are overlaid. It consists
of a new pattern of alternating dark and bright areas with
remarkably larger periods which is clearly observed at the
superimposition, although it does not appear in any of the
original structures [1]. Since 1878, when Lord Rayleigh
applied moiré technique to the study of the optical gratings’
deformations for the first time, attention to the moiré phe-
nomenon extensively increased and it found numerous
applications in different fields such as in metrology and

optical testing [1–4]. In recent decades, the moiré technique
was used in a wide range of applications in science and
technology such as in the measurement of displacements,
stresses, vibrations and motions, surface deformations and 3D
topography of phase objects [2–5]. In addition, moiré
deflectometry is one of the most accurate tools in the mea-
surements of incident wave deflections and wave-front gra-
dients. Recently, it appeared as a powerful tool in the
nonlinear refractive index measurement [6, 7], atmospheric
turbulence characterization [8–11] as well as in wave-front
sensing [12–16]. Furthermore, moiré patterns are demon-
strated in quantum imaging on the spatial correlations
between entangled photon pairs [17, 18]. Several well-
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established approaches have been used for formulation and
interpretation of the moiré pattern such as the classical geo-
metric approach [19], parametric equations method [20], and
use of Ewald’s sphere of reflection [21–24]. The best adapted
approach is the spectral approach, which is based on Fourier
theory. This approach has been largely developed by Isaac
Amidror [1, 25]. New formulations have also been introduced
for the interpretation of the moiré patterns based on the spatial
averaging and image processing [26, 27]. Presented for-
mulations at most are applicable when a set of periodic or
pseudo-periodic functions such as linear, circular, and Fresnel
zone plate are considered for the overlaid gratings. In the
presence of a phase singularity in the periodic functions of the
overlaid gratings such as in the pitch-fork grating or linear
forked gratings (LFGs) formulation of the moiré pattern needs
modification. It is worth mentioning that, in recent years,
moiré patterns featuring superimposition of LFGs and Fresnel
zone plates (ZPs) were used for the study of different physical
effects [28–34]. Also, moiré patterns of superimposition of
spiral zone plates (SZPs) were observed in [35]. In addition,
in experimental works they have been used for measurement
of the wavefront phase singularity [15, 16]. In another study,
formulation of the moiré fringes formed by overlaying two
linear gratings with slowly varying parameters is presented
[36]. It seems that this technique is going to be an inevitable
method in phase singularities measurement [35, 37]. In spite
of the considerable number of applications, there is no com-
prehensive formulation for this kind of moiré pattern. It
should be remembered that moiré patterns of superimposition
of SZPs were observed by Huguenin et al [35]. They have
demonstrated the appearance of topological defects in moiré
fringes obtained from superposition of two SZPs. We are
extending this study to more general patterns, using a reci-
procal vector approach. It should be mentioned that we have
already used the usual 2D Fourier expansion of the periodic
structures [1, 25] and reciprocal vector approach in the ana-
lysis of the moiré pattern of moving periodic structures
without considering any defects on the structures [38].

In this work, we develop a detailed theoretical descrip-
tion of the different moiré patterns produced by the super-
imposition of different kinds of gratings containing
topological singularities. The topological singularities are
naturally described by the azimuthal component of the reci-
procal vectors used in the Fourier expansion. It should be
mentioned that observation and characterization of this kind
of singularities by the Fourier spectral approach has not been
reported and it seems that without using a reciprocal approach
it is not practicable. In order to present a complete set of
moiré patterns illustrating phase singularities, we introduce
new sets of ZPs containing topological defects that we named
defected ZP (DZP). A simple form of DZP is spiral ZP in
which the topological defect is located at the center of the
plate. Results of superimposition of two LFGs, two defected
ZPs (DZPs), and superimposition of an LFG on a DZP are
presented. We simulate different moiré patterns from these
structures and offer a detailed discussion based on the pre-
sented theoretical tools. For the case of two LFGs super-
imposition, we show that the resulting moiré pattern has a

starlike shape or large-scale LFG pattern. In the case in which
two DZPs are superimposed, we show that the resulting moiré
pattern has three general forms: large-scale DZP pattern,
starlike pattern, and large-scale LFG pattern. In the super-
imposition of an LFG on a DZP, in special conditions a new
spiral ZP having a topological defect is produced in which its
defect number is related to the superimposed gratings’
structures. Having in mind that in many potential applications
of the moiré technique and moiré deflectometry one can use
these kinds of gratings instead of the linear gratings, the
presented formulation and interpretation for the moiré pat-
terns can be very useful and will find a lot of new applica-
tions. As an example, the presented formulation can be used
in singular optics measurements because gratings containing
topological defects can be produced when a plane wave
interferes with a wave containing phase singularity [39, 40].

2. Moiré patterns formulation, reciprocal vector
approach

Here, the usual 2D Fourier expansion of the periodic struc-
tures [1, 25] is presented. By considering a local spatial fre-
quency for a given periodic structure, its reciprocal vector is
determined from the transmission function of the structure.
For a superimposition of two periodic structures, the reci-
procal vector of the resulted moiré pattern is presented in
terms of the reciprocal vectors of the superimposed structures.
In the next sections, we will describe the topological singu-
larities of the structures by the azimuthal component of the
reciprocal vectors. We show that moiré patterns of static
superimposing of different periodic structures possessing
topological singularities can be characterized only using the
reciprocal vector equation of the resulted moiré patterns. As it
was mentioned previously, it seems that without using the
reciprocal approach, detection and characterization of this
kind of singularities by the Fourier spectral approach is not
practicable.

When two gratings with transmission functions t ( )1 ρ and
t ( )2 ρ are superimposed, transmitted light intensity distribution
function will be appear as a multiplication of the transmission
functions of the superimposed gratings, t t t( ) ( ) ( )1 2ρ ρ ρ= × .
One can write the transmission functions of the superimposed
gratings as:

( )t c jm iG( ) exp . , 1, 2, (1)i

m

m i i

i

i∑ρ ρ= =
=−∞

∞

where ρ indicates the position vector on the gratings, i shows
the number of grating and G ( )i ρ is the reciprocal vector of ith

grating in which GG ˆ
i i

2

i
= π

Λ
, where Ĝi is an unit vector

perpendicular to the corresponding grating lines and iΛ is
period of the grating. The values of c smi are the Fourier series
coefficients. Spectrum of the spatial frequencies of t ( )i ρ is

2
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given by:

( )T C m iG G G( ) , 1, 2, (2)i

m

m i i

i

i∑ δ= − =
=−∞

∞

where G( )δ is impulse symbol andCmi is the amplitude of the
corresponding impulse. Based on the convolution theorem,
the spectrum of the multiplication of transmission functions
of the superimposed gratings can be written as:

( )T C m mG G G G( ) , (3)
m

m 1 1 2 2

1,2

1,2
⎡⎣ ⎤⎦∑ δ= − +

=−∞

∞

whereC C Cm m m1,2 1 2= × [1, 25]. The transmission function in
equation (3) has a set of spatial frequencies determined by:

m m m mG G G , , . (4)1 1 2 2 1 2= + ∈ 

The first order moiré fringes is determined by plus and minus
of minimum of two pairs of frequencies, the vectorial sum
and the vectorial difference of G1 and G2:

( )G G G G Gmin , . (5)moire 1 2 1 2= ± + −́

Other values of m1 and m2 in equation (4) correspond to the
higher orders of the moiré patterns. Now, we define a scalar
function g x y x yG( , ) ( , ). ρ= for each of gratings and rewrite
the transmittance function of equation (1) for a given grating
in the following form:

t x y c jmg x y( , ) exp [ ( , )]. (6)
m

m∑=
=−∞

∞

From the transmission function of the grating, its spatial
frequency components are calculated by:

x y j
t x y

t x y
mG ( , )

( , )

( , )
, 0, 1, , (7)m

m

m
( )

( )

( )

= − = ± …

where m corresponds to the different terms of the transmis-
sion function.

Hereafter, for simplicity, we use amplitude gratings with
sinusoidal transmission functions. For constructing a sinu-
soidal grating in equation (6), three terms of m 0, 1= ± are
needed. By considering the value of transmission function in
a range [0,1], equation (6) for a sinusoidal grating is reduced
to [41]:

t jg x y jg x y

g x y

( )
1

2

1

4
exp[ ( , )]

1

4
exp [ ( , )]

1

2
{1 cos [ ( , )]}. (8)

ρ = + − +

= +

According to equations (6) and (7), for plus and minus values
of m, equal vectors with opposite directions are obtained for
G. Therefore, a sinusoidal grating can be defined only by the
frequency corresponding to m 1= + . This means that the
local spatial frequency of an amplitude grating with a
sinusoidal transmission function in the Cartesian coordinate

system is given by [1]:

x y
g x y

x
x

g x y

y
yG( , )

( , )
ˆ

( , )
ˆ , (9)

⎡
⎣⎢

⎤
⎦⎥= ∂

∂
+ ∂

∂

where x̂ and ŷ are unit vectors in x and y directions,
respectively. When g ( )ρ is not an explicit function of x and y,
equation (9) is used in its general form as:

gG( ) ( ). (10)ρ ρ=

3. Linear forked grating (LFG) presentation

The transmission function of a linear forked grating (LFG)
with a sinusoidal amplitude can be written as [42]:

t x y
x

l( , )
1

2
1 cos 2 , (11)⎜ ⎟

⎡
⎣⎢

⎛
⎝

⎞
⎠

⎤
⎦⎥π

Λ
φ= + −

where φ denotes the azimuthal angle with respect to the z-axis
and Λ is the period of the grating in distances far from the
dislocation point located at the center of coordinate system.
The value of l is an integer number denoting dislocation of the
grating lines that we call it topological defect number or
defect number of the grating. Also, we named the dislocation
point as a branch point. In figure 1 two typical LFGs with
defect numbers of l 4= ± are presented. In this paper we use
MATLAB programming for obtaining the simulated images.

For the sinusoidal amplitude LFG, using equations (10)
and (11), the reciprocal vector is obtained as:

x
l

G
2

ˆ ˆ , (12)
π
Λ ρ

φ= −

where x̂ is unit vector along the x-axis and φ̂ is unit vector of
azimuthal angle y xtan ( )1φ = − . The radial coordinate from
the branch point or center of the coordinate system is given by

x y( )2 2 1 2ρ = + .
For general formulation about the moiré patterns of the

two LFGs, we need to calculate LFGs’ reciprocal vectors,
when they are rotated and displaced in their planes. Now, let
us apply a rotation by an angle α around the branch point of
an LFG and after that apply a displacement to the grating in
which its branch point moves from the origin of the

Figure 1. Two typical LFGs with defect numbers of (a) l 4= + and
(b) l 4= − . For a size of each of gratings 2.5 2.5 cm2× , the period is

0.1 cmΛ = .

3
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coordinates system to x y( , )δ δ . As a result, equation (12)
changes to:

( )x y
l

G
2

cos ˆ sin ˆ ˆ . (13)x y, ,
1

1
π
Λ

α α
ρ

φ= + −α δ δ

Now, at this geometry, coordinates of the branch point are

x y( , )δ δ , x x y y( ) ( )1
2 2 1 2⎡⎣ ⎤⎦ρ δ δ= − + − is radial coordinate

from the branch point, and ˆ1φ is azimuthal unit vector around
the branch point. In addition, the azimuthal angle is given by

y y x xtan [( ) ( )]1
1φ δ δ α= − − −− .

4. Moiré patterns of two LFGs

4.1. Moiré patterns of two LFGs in parallel case

We consider superimposition of two LFGs having same
periods ( 1 2Λ Λ Λ= = ) and different defect numbers (l l1 2≠ )
in a case in which their branch points coincident and are
located at the center of the coordinate system. In addition, we
assume that the angle between the lines of the superimposed
gratings is zero, 0α = ; we call this case as parallel case. In
this case, the reciprocal vector of the resulting moiré pattern
using equations (5) and (13) is obtained as:

l l
G ˆ . (14)moire

2 1

ρ
φ=

−
́

This equation indicates that the moiré pattern has a starlike
structure. Spatial frequency of the resulted starlike pattern
(fringes per length) in azimuthal direction is equal to

f
l l

2

2 1=
πρ
−

and number of dark or bright radial moiré fringes

is N f l l2 2 1πρ= = − . This means that number of moiré
fringes is equal to the difference of the gratings’ defect
numbers. In figure 2(a), a typical moiré pattern of super-
imposition of two LFGs having l 51 = and l 42 = − is shown,
where there are 9 fringes on the moiré pattern.

In second step, we consider that the branch points of the
superimposed LFGs are separated and their lines are still
parallel, in which case the branch points are moved to

x y
(

2
,

2
)

δ δ∓ ∓ , respectively. In this case, the reciprocal vector

of the resulting moiré pattern using equations (5) and (13) is

given by:

l l
G ˆ ˆ , (15)moire

1

1
1

2

2
2ρ

φ
ρ

φ= − +́

where x y( ) ( )x y
1,2 2

2
2

2
1 2⎡⎣ ⎤⎦ρ = ± + ±δ δ and ˆ1,2φ are unit

vectors corresponding to the azimuthal angles defined at the
branch points by y xtan [( ) ( )]y x

1,2
1

2 2
φ = ± ±δ δ− . As a

simple example, in the superimposition of a linear grating
(LG), where its defect number is l 01 = , on an LFG, the
reciprocal vector of the resulted moiré pattern will be equal to
G ˆl

moire 2
2

2
φ=

ρ́ . This indicates that the produced pattern will be

starlike pattern originating from the branch point of the LFG.
This kind of moiré pattern has a potential application in the
transduction of linear motions into angular velocities.

In figures 2(b) and (c) separating branch points of two
LFGs, two sets of starlike moiré patterns appear at the vicinity
of branch points. The number of moiré fringes around each
branch point is equal to the defect number of the corre-
sponding grating. The moiré pattern at the area far from the
branch points has a deformed starlike shape. In figure 2(b),
the signs of l1 and l2 are same, but for figure 2(c), their signs
are opposite. In the area between the branch points, moiré
fringes are observed as something like electric field lines of
two charges. In spite of the electric field lines of two charges,
here, when defect numbers of the gratings have same signs,
their fringes is joined together and when the defect numbers
have opposite signs, each set of fringes is repelled by other set
of fringes.

Now, we derive the above-mentioned properties of the
resulting moiré pattern by investigating the phase of the
pattern. We consider two LFGs in case 0α = , in which their
branch points are located at ( , )x y

2 2
∓ ∓δ δ , respectively. From

equation (11) and the fact that the transmission function of the
moiré pattern is obtained by multiplying the transmission
functions of the gratings, we can deduce the phase distribu-
tion of the moiré pattern in following form:

( )x l l
2

. (16)moire 1 1 2 2Φ π
Λ

δ φ φ= − −́

Now, we calculate the total number of moiré fringes (N) to
come out from the branch points. As an integral of moiré
pattern phase distribution gradient over a simple closed path
encircling branch point(s) is equal to N2π , we can write

N s G s
1

2
. d

1

2
. d , (17)

C C
moire moire∮ ∮π

Φ
π

= =́ ́

where C is a simple closed integration contour, sd is the
element of the C contour, and ∣ ∣ denotes absolute value.
Using equation (16) in equation (17) we have

N
l l

s s
1

2
ˆ . d

1

2
ˆ . d . (18)

C C

1

1
1

2

2
2∮ ∮π ρ

φ
π ρ

φ= − +

By calculating equation (18) over a circle having a very small
radius 1ρ with center located at the branch point of the first
grating, we find N l1= ∣ ∣, where we use x y,1ρ δ δ≪ ∣ ∣ ∣ ∣ and

x y( )2
2 2 1 2ρ δ δ≈ + . In this case, both integrals in

Figure 2. Moiré patterns of superimposition of two LFGs having
equal periods of 0.02 cmΛ = in parallel case: (a) defect numbers are
l 51 = and l 42 = − and branch points coincident in common center.
(b) gratings separated in two dimensions and l 51 = and l 42 = (same
signs) and (c) l 51 = and l 42 = − (opposite signs).

4
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equation (18) are calculated over the first grating’s branch
point. In addition, for calculating the first integral we use

dsd ˆ1 1 1ρ φ φ= . Calculation of the second integral over the first
grating’s branch point is slightly different. For very small
value of 1ρ , values of 2ρ and ˆ2φ to be constant and the second

term changes to sˆ . dl

2 2
2

2
∮φ

πρ
. Now, as the closed path integral

of sd is zero, we consider second integral equal to zero.
Similarly, the number of moiré fringes to come out from

branch point of the second grating is determined equal to l2 .
Now, we calculate the path integral over a circle surrounding
both of the branch points. It is straightforward to show that
the total number of moiré fringes to come out from this circle
is equal to l l1 2− . For the same signs of l1 and l2, the number
of moiré fringes joining the two branch points is equal to the
smaller defect number of two gratings. For different signs of
l1 and l2, the total number of moiré fringes to come out from
this circle are equal to l l1 2∣ ∣ + ∣ ∣ and consequently there are
no joint moiré fringes between the two sets of moiré fringes.

4.2. Rotation effect on moiré patterns of two LFGs

Now, we consider the superimposing of two LFGs having
equal periods ( 1 2Λ Λ Λ= = ) and different defect numbers
(l l1 2≠ ), in which their branch points are coincident and
located at the center of the coordinate system ( )1 2ρ ρ ρ= = .
We assume that the first grating rotates by

2
+ α and the other

one rotates by
2

− α in their planes. In this case, the reciprocal
vector of the resulting moiré pattern is calculated from
equations (5) and (13):

y
l l

G 2
2 sin

ˆ ˆ . (19)moire
2 1 2

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟π

Λ ρ
φ= −

−
α

́

Compared with equation (12) the first term of equation (19)
indicates that for small value of the rotation angle, the
resulting moiré pattern is a magnified LFG pattern with a
period of 2 sinmoire 2

Λ Λ= ∣ ∣α
́ , in which the direction of the

produced moiré fringes is almost perpendicular to the lines of
the superimposed gratings. In addition, the defect number of
the moiré pattern is equal to the difference of two gratings’
defect numbers and its sign is related to their relative rotation
angle. By comparing the second terms of the mentioned
equations, we see that in a clockwise rotation of the second

grating on the first one, the sign of the moiré forked pattern
determined by ( )l l1 2− . Comparison between figures 1 and
3(a) shows that for a positive value of l in equation (12), the
branching direction of the produced fork-shaped pattern is in
the ŷ+ direction and its reciprocal vector is almost in the x-
direction. Similarly, here small values of the rotation angle
( 1α ≪ ), the reciprocal vector of produced moiré pattern, are
almost in the y-direction and if ( )l l1 2− is positive, branching
of the fork-shaped moiré pattern will be in the x̂0− direction.
A change on the sign of ( )l l1 2− or α leads to a change on the
branching direction of the fork-shaped pattern. In figure 3(a),
the moiré pattern of two forked gratings having defect
numbers of l 51 = and l 42 = − in which first grating rotated
on the second one in trigonometric direction is presented. The
number of branches or defect number at the center of the
produced forked pattern is equal to 9 and branching is in the

x̂− direction.
Now, let us to calculate reciprocal vector of moiré pat-

tern, when two gratings experience a relative rotation angle of
close to a straight angle (α π≈ ). We define β as α π β= + ,
in which 1β∣ ∣ ≪ . By considering cos ( 2 2) sinπ β± = ∓
( 2)β and sin ( 2 2)π β± = cos ( 2)β+ , and using G1=
G( 2 2)π β+ and G2= G( 2 2)π β− − , in which we assumed that the
first grating rotated by ( ) 2π β+ and the other one rotated by

( ) 2π β− + , we can calculate the reciprocal vector of the
moiré pattern. By considering both sum and difference terms
of ±G1 and ±G2 and the fact that the frequency of the moiré
pattern is the smallest frequency of the superimposition pat-
tern, here equation (5) leads to ( )G G Gmoire 1 2= ± +́ , then:

x
l l

G 2
2 sin

ˆ ˆ . (20)moire
2 1 2

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟π

Λ ρ
φ= +

+
β

́

Compared to equations (12) and (20), this equation illustrates
a fork-shaped pattern with lines in the y-direction and defect
number equal to l l1 2+ . Branching of the fork-shaped

pattern is in the ŷ− direction when values of ( )l l1 2+ and β
are positive. Changing the sign of one of these quantities
changes the branching direction. This result is presented for
the previously mentioned two gratings in figure 3(b) with
positive small value of β. In this pattern, the defect number is
equal to one and branching is in the ŷ− direction.

4.3. Relative displacements of the superimposed gratings

Here, we consider the superimposing of two LFGs having
equal periods ( 1 2Λ Λ Λ= = ) and different defect numbers
(l l1 2≠ ), in which their branch points are separated and

located at ( ),x y

2 2
∓ ∓δ δ , respectively. Also, we consider that

the gratings are rotated by angles of 2α± , respectively. The
reciprocal vector of the resulted moiré pattern using
equations (5) and (13) is given by:

y
l l

G 2
2 sin

ˆ ˆ ˆ . (21)moire
2 1

1
1

2

2
2

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟π

Λ ρ
φ

ρ
φ= − −

α

́

Figure 3. Typical moiré patterns of two LFGs, here l 51 = and
l 42 = − and relative angle of the gratings’ lines is: (a) 1α ≪ and (b)

1β ≪ . In both cases α and β are positive.
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This relation indicates two different magnified fork-shaped

patterns with centers located at ( ),x y

2 2
− −δ δ and

y
,

2
x

2
⎜ ⎟⎛
⎝

⎞
⎠

δδ ,

respectively. At the area far from the branch points of the
gratings, the pattern is a set of almost parallel lines in the x-
direction. The defect number of the produced pattern around

location
y

,
2

x

2
⎜ ⎟⎛
⎝

⎞
⎠

δ− −δ is l1 and for the other one which is

placed at
x y

2
,

2
⎜ ⎟⎛
⎝

⎞
⎠

δ δ
is l2− . Branching direction of the

produced fork-shaped moiré patterns depends on the sign of
relative angle and their defect numbers. For positive value of
α, directions of the produced fork-shaped patterns are
determined by the signs of the defect numbers. Both the
positive sign of l1 and negative sign of l2 are corresponding
branching directions in the x̂+ direction and for the opposite
sign of each one, it changes to x̂− direction. As an example,
in figures 4(a) and (b) moiré patterns of two gratings with the
same signs and different signs of the defect numbers are
shown, respectively. For 0α = , the shape of the produced
moiré pattern changes to the parallel case which was
discussed previously.

4.4. Moiré patterns of two LFGs having slightly different
periods in parallel case

In the superimposition of two LFGs having slightly different
periods, in the parallel case, from equation (12) reciprocal
vector of the produced moiré pattern is given by:

x
l l

G
2 2

ˆ ˆ ˆ , (22)moire
1 2

1

1
1

2

2
2

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟π

Λ
π

Λ ρ
φ

ρ
φ= − − −́

where ˆ1,2φ are unit vectors of azimuthal coordinates 1,2φ
defined at the corresponding branch points, and 1,2ρ are the
radial coordinates measured from the corresponding branch
points. The resulting moiré pattern is a magnified fork-shaped
pattern in which moiré fringes at the area far from the branch
points are almost in the y-direction and their spacing is

( )moire 1 2 1 2Λ Λ Λ Λ Λ= ∣ − ∣́ . Branching of the moiré fringes
occurs on the branch point(s) of the superimposed gratings. In

figure 5 different moiré patterns of two LFGs having slightly
different periods in parallel case are presented.

5. Presentation of Fresnel ZPs containing
topological defects

A zone plate consists of a set of radially symmetric rings,
known the Fresnel zones, which alternate between opaque
and transparent. These zones switch at radii where defined by
[43]:

n f ns, (23)n
2

1ρ λ≈ =

where n is an integer number indicates the number of rings
and f1 is the first focal length for an incident plane wave with
wavelength of λ when the ZP is used as a diffractive lens. We
call s f1λ= as the ZP constant. The transmittance function of a
ZP can be expressed in a Fourier series as:

t a
jm

s
( ) exp , (24)

m

m

2⎛
⎝⎜

⎞
⎠⎟∑ρ πρ=

=−∞

∞

where ( )x y2 2 1 2
ρ = + and ams are expansion coefficients.

Similar to the linear gratings, as discussed before, by
considering the terms correspond to m 0, 1= ± in the
expansion, generates sinusoidal ZP function. By use of
equation (10), reciprocal vector of the resulting grating
contains plus and minus of:

s
G

2
ˆ , (25)

πρ ρ=

which ρ̂ is the unit vector corresponding to radial coordinate.
Spatial period at a given point defined as:

s
( ) , (26)Λ ρ

ρ
=

where it depends on ρ. A typical sinusoidal amplitude Fresnel
ZP is shown in figure 6(a).

5.1. Presentation of ZPs containing topological defects

By adding an additional term to the phase of a ZP, which
depends on the azimuthal coordinate, we can introduce a

Figure 4. Moiré patterns of two LFGs with size 2.5 2.5 cm2× in
which the second grating with respect to the first one is rotated in the
trigonometric direction. Branch points of the first and second
gratings are located at ( 0.3, 0.3) cm∓ ∓ respectively, and (a) l 51 =
and l 42 = − (b) l 51 = and l 42 = .

Figure 5. Moiré patterns of superimposition of two LFGs having
slightly different periods 0.02 cm1Λ = and 0.022 cm2Λ = in
parallel case. In (a) gratings’ defect numbers are l 51 = , l 42 = and
their branch points coincident. In (b) and (c), gratings’ branch points
are separated and defect numbers are l 51 = , l 42 = , and l 51 = ,
l 42 = − , respectively.
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ZP containing a topological defect. The center of the azi-
muthal angle coordinate system may be coincident with the
center of the ZP coordinate system or not. Transmission
function of this kind of ZPs with a sinusoidal amplitude is
given by:

t
s

l( )
1

2
1 cos , (27)

2⎡
⎣
⎢⎢

⎛
⎝⎜

⎞
⎠⎟

⎤
⎦
⎥⎥ρ πρ φ= + − ′

where φ′ is the azimuthal angle defined at the branch point
and we have:

( )y y

x x
x ytan , , (28)1 0

0

2 2
1
2

⎛
⎝⎜

⎞
⎠⎟φ ρ′ =

−
−

= +−

where x y( , )0 0 are the branch point’s coordinates in the ZP
coordinate system. We named this kind of ZPs that contain
topological defects DZPs. When the branch point lies at the
center of a ZP, it named as spiral ZP (SZP). Figure 6(b) shows
a typical SZP pattern having a defect number equal to 3. In
figure 6(c) a DZP having a branch point apart from the center
of the ZP is shown. For positive value of defect number,
branching direction will be in the azimuthal unit vector
direction. Reciprocal vector of the grating using equation (10)
is given by:

s

l
G

2
ˆ ˆ , (29)

πρ ρ
ρ

φ= −
′

′

where φ̂′ is unit vector corresponding to the azimuthal
coordinate φ′ defined from the branch point and

x x y y[( ) ( ) ]0
2

0
2 1 2ρ′ = − + − .

Fourier spectrum analysis of SZP already is used in
signal processing [44]; as a potential application, it can be
extended to DZPs.

6. Moiré patterns of two DZPs

In the following, we investigate several cases for super-
imposition of two DZPs. In a general case, we assume that
the centers of DZPs (not the locations of the branch
points) coincident together and the corresponding branch

points located at ( )x y,0 01 1
and ( )x y,0 02 2

, respectively. Also,

we assume that the defect numbers and the ZPs’ constants
are not identical, l l1 2≠ and s s1 2≠ . In this case, using
equations (5) and (29) reciprocal vector of the moiré pattern
obtained as:

s s

l l
G 2

1 1
ˆ ˆ ˆ , (30)moire

2 1

2

2
2

1

1
1

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟πρ ρ

ρ
φ

ρ
φ= − −

′
′ −

′
′́

where ˆ 1,2φ′ are unit vectors of the azimuthal coordinates 1,2φ′
defined at the corresponding branch points, and 1,2ρ′ are radial
coordinates measured from the same points.

In a special case, in which the branch points of two

gratings coincident, ( ) ( )x y x y x y, , ( , )0 0 0 0 0 01 1 2 2
= = , and

gratings’ constants are equal, s s1 2= , it is easy to show that
resulting moiré pattern has a starlike shape and has a number
of moiré fringes equal to l l2 1− . By substituting
ˆ ˆ ˆ1 2φ φ φ′ = ′ = ′ and 1 2ρ ρ ρ′ = ′ = ′ in equation (30) we have:

l l
G ˆ , (31)moire

2 1

ρ
φ=

−
′

′́

where it is similar to equation (14), with the exception that
here starlike shape centered at x y( , )0 0 instead of common
centers of the gratings (see figure 7(a)).

In a case where branch points of the gratings not coin-
cident, using equation (17) one can show that the resulting
moiré patterns will be similar to the moiré patterns of the two
LFGs superimposition in the parallel case discussed before.
The results are shown in figures 7(b) and (c) for the opposite
and same signs of l1 and l2, respectively.

Now, we consider that the gratings’ constants are not
identical. According to equation (30), the resulting pattern is a
DZP shape pattern with a new ZP constant of
s s s s s1 2 1 2= − . Here we call the resulting ZP’s constant
moiré fringes spacing. When the branch points of the super-
imposed DZPs coincident, the resulting pattern is a magnified
DZP having a branch point placed on the gratings’ branch
points. In this case we have:

s s

l l
G 2

1 1
ˆ ˆ . (32)moire

1 2

1 2⎛
⎝⎜

⎞
⎠⎟πρ ρ

ρ
φ= − −

−
′

′́

Figure 6. (a) A typical sinusoidal ZP with ZP constant of
s 0.1 cm2= , (b) A typical SZP with same constant and defect
number of l = 3, and (c) A typical DZP with same s and l in which
branch point’s coordinates are x y( , ) (0.6, 0.6) cm0 0 = . Size of all

gratings are 2.5 2.5 cm2× .

Figure 7. Different typical moiré patterns of superimposition of two
DZPs with same ZP constants (s 0.006 cm2= ). In (a) defect
numbers of the gratings are l 51 = and l 42 = − and branch points
coincident at coordinates x y( , ) (0.5, 0.5)cm0 0 = . In (b) defect
numbers are not changed, but the branch point of the second grating
moved to ( 0.5, 0.5)cm− − . In (c) the value of l2 changed to +4.

7

J. Opt. 17 (2015) 105604 S Rasouli and M Yeganeh



The number of moiré fringes comes out from branch point, is
equal to the difference of the defect numbers l l1 2− . For
s s2 1> , by comparing equations (32) and (29), we see that
branching direction is determined by sign of ( )l l1 2− and for
s s1 2> , this direction is changed. These behaviors are
illustrated in figures 8(a) and (b).

Now, let us assume that the branch points are apart from
each other. In this case, according to equation (30), the
resulting moiré pattern will have two branch points appearing
on the branch points of the gratings. The defect number at
each branch point is equal to the defect number of the cor-
responding grating. When s s2 1> , the branching direction
corresponding to the first grating is the same as the sign of l1,
and the direction of the second branching obeys the sign of

l2− . This behavior changes when s s1 2> as shown in
figure 8(c).

6.1. Relative displacements of the superimposed gratings

In the superimposition of two ZPs, in which their centers
separated from each other, the produced moiré fringes are a
pattern of parallel fringes. In this case, moiré fringes’ spatial
period is related to distance of the centers of the ZPs and the
direction of the moiré fringes is perpendicular to the dis-
placement direction [28]. Here, again we consider a same
coordinate system for both of ZPs, in which ZPs’ centers are
symmetrically separated at the selected coordinate system.
Now, we need to find a modified reciprocal vector formula for
a DZP, when its center is not coincident with the origin of the
coordinate system. We consider a DZP, in which its center’s

coordinates change from origin (0, 0) to ( ),x y

2 2

δ δ . In this case,

coordinates of the branch point of the DZP will change from

x y( , )0 0 to ( )x y,x y
0 2 0 2

+ +δ δ and the reciprocal vector in

equation (29) for this grating should be modify to the fol-
lowing form:

s

l
G

2
ˆ ˆ , (33)x y

2
,

2

1
1

1
1

πρ
ρ

ρ
φ= −

′
′δ δ

where, the parameters 1ρ , 1ρ′ and unit vectors 1̂ρ and ˆ 1φ′
defined as below:

x
x

y
y

x x
x

y y
y

x
x

x y
y

y

2 2
,

2 2
,

ˆ
1

2
ˆ

2
ˆ ,

1

2 2

1 0

2

0

2

1
1

1
2

1
2

⎜ ⎟ ⎜ ⎟

⎜ ⎟ ⎜ ⎟

⎜ ⎟ ⎜ ⎟

⎡
⎣
⎢⎢

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎤
⎦
⎥⎥

⎡
⎣
⎢⎢

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎤
⎦
⎥⎥

⎡
⎣⎢

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎤
⎦⎥

ρ δ δ

ρ δ δ

ρ
ρ

δ δ

= − + −

′ = − − + − −

= × − + −

and

y y
y

x x x
x

yˆ
1

2
ˆ

2
ˆ .1

1
0 0⎜ ⎟ ⎜ ⎟

⎡
⎣⎢

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎤
⎦⎥φ

ρ
δ δ′ =

′
× − − − + − −

Now, we use equations (33) and (5) to calculate the reciprocal
vector of the resulting moiré pattern, in which their centers are
separated symmetrically by a distance x y( , )δ δ . For simplicity
we assume that the gratings’ constants are identical
(s s s1 2= = ) and l l1 2≠ , and the branch points are located

at different coordinates such as ( )x y,0 01,2 1,2
. Then, we get:

( )
s

x x y y
l l

G
2

ˆ ˆ ˆ ˆ , (34)moire
1

1
1

2

2
2

⎛
⎝⎜

⎞
⎠⎟

π δ δ
ρ

φ
ρ

φ= + −
′

′ −
′

′́

where ˆ 1,2φ′ are unit vectors of azimuthal coordinates 1,2φ′ ,
defined at the centers of branch points located at

( )x y,x y
0 2 0 21,2 1,2

∓ ∓δ δ and 1,2ρ′ are radial coordinates measured

from the branch points, respectively. The first term in the last
equation shows that the produced moiré pattern has linear

shape with a constant period of ( )s x y2 2 1 2
Λ δ δ= + . The

moiré fringes’ orientation is perpendicular to the line
connecting the origins of the gratings and moiré fringes will
have an angle of x ytan ( )1γ δ δ= −− with the x-axis. Second
term in equation (34) indicates that two fork-shaped patterns
will appear in the resulting moiré pattern, in which their

branch points located at ( )x y,x y
0 2 0 21,2 1,2

∓ ∓δ δ , respectively.

The defect numbers are equal to the absolute value of the
defect numbers of the corresponding gratings.

Finally, we consider a case in which the, direction of the
vector connecting the center of first grating to the center of the
second one lies in the x̂+ direction. As illustrated in figure 9,
in this case, branching direction of the generated fork-shaped
moiré pattern at the vicinity of the first grating’s branch point
follows the sign of l1+ and the other shape follows the l2−
sign (see equation (12) and figure 1).

7. Moiré patterns of an LFG and a DZP

In this section, formulation of moiré pattern of super-
imposition of an LFG and a DZP is presented. We assume
that the defect number and grating constant of DZP are l1 and
s, respectively, and the defect number and period of LFG are
l2 and Λ, respectively. In addition, we assume that the centers

Figure 8. Typical moiré patterns of two DZPs having l 21 = and
l 52 = . In (a) s 0.006 cm1

2= , s 0.0063 cm2
2= , and branch points

coincident and located at x y( , ) (0.5, 0.5) cm0 0 = . In (b) s1 and s2
take each others values are given in (a). In (c) branch points are
separated from each other in which x y( , ) (0.5, 0.5)cm0 01 1

= and

x y( , ) ( 0.5, 0.5) cm0 02 2
= − − .
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of the two gratings separated along the x-direction by a value
of xδ . We consider that center and branch point of DZP are

located at ( ), 0x

2
− δ and ( )x y,x

0 2 0− δ , respectively. Also, the

branch point and center of LFG coincident and located at

( ), 0x

2

δ , and lines of LFG are almost in the y-direction. In this

section, we use four radial vectors , 1ρ ρ , 1ρ′ , and 2ρ , as
illustrated in figure 10. By considering 0α = and using
equations (13) and (33), the reciprocal vectors of DZP and
LFG are given by:

s
x

x
x y y

l

s

l

x
l

G

G

2

2
ˆ ˆ ˆ

2
ˆ ,

2
ˆ ˆ ,

(35)

x

x

2
DZP 1

1
1

1
1

1
1

2
LFG 2

2
2

⎜ ⎟
⎧

⎨

⎪⎪⎪

⎩

⎪⎪⎪

⎡
⎣⎢

⎛
⎝

⎞
⎠

⎤
⎦⎥

ρ

π δ
ρ

φ

π
ρ

φ

π
Λ ρ

φ

= + + −
′

′

= −
′

′

= −

δ

δ

−

respectively. Considering both sum and difference frequen-
cies in equation (5) leads to:

s

s
x

l l
G

2
ˆ ˆ ˆ . (36)moire 1

2

2
2

1

1
1⎜ ⎟

⎛
⎝

⎞
⎠ρπ

Λ ρ
φ

ρ
φ= ∓ ± −

′
′́

As period of DZP is varying as a function of the radial
coordinate (see equation (26)) and LFG has a constant period,
for the case of s Λ> , there are two places over the
superimposition area, in which their periods are equal. When
a branch point of LFG locates on one of these points, we have
x sδ Λ= ± and as a result the phrase in parenthesis of
equation (36) is equal to 2ρ (see figure 10). Then we have:

s

l l
G

2
ˆ ˆ , (37)moire 2

2

2
2

1

1
1ρπ

ρ
φ

ρ
φ= ± −

′
′́

The first two terms of equation (37) together show a moiré
pattern which is a non-magnified SZP with pattern constant
and defect number of s and ∓l2, respectively. The minus sign
corresponds to a plus value of xδ . Minus value of xδ indicates
a little different case, in which the center of the DZP is placed
on the right side of the center of the LFG, and it refers to the
plus value of l2 in this equation.

Now, let us to investigation effect of third term in
equation (36). In this regard, we assume that periods of DZP
and LFG at the location of branch point of DZP to be equal,
and branch point of DZP located on x-axis, then equation (26)
leads to x s0 Λ= ± . Positive value of x0 corresponds to s Λ+
and negative value of it corresponds to s Λ− . According to
figure 10, the reciprocal vector of the resulting moiré pattern
in equation (36) changes as below:

s

l l
G

2
ˆ ˆ . (38)moire 1

2

2
2

1

1
1ρπ

ρ
φ

ρ
φ= ′ ± −

′
′́

Again, the first and third terms of equation (38) indicate a
non-magnified SZP with a defect number equal to l1, in which
its center located at the branch point of DZP. Here, the second
term does not produce an interesting pattern, except when the
periods of both gratings are equal in the branch point of the
LFG as discussed previously.

As the last case, we consider that branch points of two
gratings coincident. Consequently, x x0δ = and vectors 1ρ′
and 2ρ are equal, and unit vectors ˆ 1φ′ and ˆ2φ are identical. In
addition, if the periods of two gratings are equal in common
branch point, we get x x s0δ Λ= = ± and equation (36) leads
to:

s

l l
G

2
ˆ , (39)moire 1

1 2

1
1ρπ

ρ
φ= ′ −

∓
′

′́

Here, this equation also indicates a non-magnified SZP with
center in the common branch point and defect number equal
to ( )l l1 2∓ . Minus and plus signs refer to positive and
negative values of x0, respectively. These behaviors are
illustrated in figure 11.

Figure 9. Moiré patterns of two DZPs, in a case, their centers not
coincident. Both of the gratings’ constants are identical,
s 0.006 cm2= , and defect numbers are l 21 = and l 52 = . The
centers of the gratings separated by (a) x y( , ) (0.03, 0.03) cmδ δ = ,
(b) x y( , ) ( 0.03, 0.03)cmδ δ = − − and (c) x y( , ) (0.03, 0)cmδ δ = . In
(a) and (b) the branch points coordinates are x y( , ) (0.5, 0.5)0 01 1

=
and x y( , ) ( 0.5, 0.5)0 02 2

= − − , respectively. In (c) x y( , )0 01 1
=

(0.515, 0.5) and x y( , ) (0.485, 0.5)0 02 2
= in which two branch points

coincident after displacement.

Figure 10. Presentation of different radial vectors in the super-
imposition of an DZP on an LFG. The values , ,1 1ρ ρ ρ′ , and 2ρ , are
position vectors originated from center of presented Cartesian
coordinates system, center and branch point of DZP, and center of
LFG to a given point (x, y) in the superimposition area, respectively.
x x̂0 is position vector starts from center of DZP and ends at its
branch point and xx̂δ is a vector connecting center of DZP to center
of LFG.
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8. Conclusion

In this work, a very simple, uniform, and comprehensive
formulation for the moiré patterns of superimposition of a pair
of gratings having topological defects (various super-
imposition of a pair of LFGs and/or DZPs) based on the
reciprocal vectors approach is presented. Phase singularities
of the overlaid gratings are considered basically in a simple
manner in the presented formulation. For different cases,
moiré patterns’ formulations are investigated and corre-
sponding simulations presented by MATLAB programming.
Results of formulation and simulation are completely con-
firmed each other. The presented formulation has potential
applications in singular optics measurements. As a direct
allusion, a grating containing topological defect can be pro-
duced when a plane wave interferes with a wave containing
phase singularity. Meanwhile, by superpositions of optical
fields with the vortices, interference fringes similar to the
moiré patterns can be obtained [17, 45]. In addition, it seems
that these kinds of moiré patterns in an arrangement of grat-
ings in which they are apart such as in the moiré deflecto-
metry and in the Talbot interferometry may have fantastic
applications. Investigation of moiré patterns with the super-
imposition of two radial or two circular gratings and their
mutual superimpositions with each other or with LFGs or
DZPs when they are possess branching points with the pre-
sented method is very interesting research subject. Results of
these kinds of superimpositions are very interesting too, and
new aspects of this moiré technique’s applications can be
found in these kinds of superimpositions. Due to space lim-
itations results of these kinds of superimpositions are not
presented in current work. Finally, consideration of the

dynamic behavior of these kind moiré patterns when super-
imposed gratings are moved with respect to each other is
another interesting subject.
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