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For convenient optical communications by the aid of vortex beams, topological charge alterations should
be translated to the change in intensity of the output light. In this paper, we formulate and experimentally
investigate diffraction of vortex beams from amplitude radial gratings having sinusoidal profile. We show
that, the diffraction pattern simply renders both topological charge and twist direction of the impinging
vortex beam. When, topological charge of the vortex beam and the radial grating spokes number are
equal, intensity on the optical axes of the Fraunhofer pattern gets a maximum value. Otherwise, its value
on the optical axes remains zero. We examined the method on different vortex beams, the measured
topological charge of generated beams are in an excellent agreement with the excepted values. We show
that an alteration between two vortex beams, in which one has a topological charge of equal to the grating
spokes number, is translated to a binary change in intensity of the output light on the optical axes. This
feature might find wide applications in optical communications. © 2018 Optical Society of America

OCIS codes: (050.4865) Optical vortices ; (050.0050) Diffraction and gratings; (260.6042) Singular optics, topological defects; (060.4510)
Optical communications.
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1. INTRODUCTION

As optical vortex beams carry orbital angular momentum, they
are used in trapping, manipulation, and transferring of angular
momentum to small particles [1], optical communications [2],
quantum state manipulation [3], and so on. Due to these fea-
tures, they have garnered great deal of attention in recent years.
A number of methods have been proposed to determine the
topological charge (TC) of an incident vortex beam, including
interferometry [4], moiré deflectometry [5], Talbot effect [6] and
diffraction from gratings [7–9], and the use of optical elements
such as an annular aperture [10], an axicon [11], a wedged opti-
cal flat [12], a sectorial screen [13], phase shift devices [14], and
so on. Furthermore, a considerable number of researches are
dedicated to the use of vortex beams in optical communications
[2, 15, 16].

We have recently investigated diffraction of a plane wave
from amplitude radial gratings and we observed unprecedented
optical patterns at the transverse planes that are shape-invariant
during propagation [17]. In that work, we have shown that
the geometric shadow and near-field and far-field diffraction
patterns are observable at planes parallel to the grating plane and

are continuous at distances from the grating. Also, a resulting
pattern was interpreted as the Talbot carpet at the transverse
plane. Most importantly, in that work we have shown that, as
a consequence of turning a conventional grating into a radial
grating with a central singularity, the plane boundaries between
the optical regimes have acquired curvature.

It is worth mentioning that in another work, an introductory
study of the diffraction of plane wave from radial rings was
presented [18]. In that work, although experimental results of
diffraction from amplitude radial gratings were presented, the
observed phenomenon has been interpreted wrongly. In that
work, there is no address to the fine structure of the resulting
diffraction patterns in the transverse planes, such as the forma-
tion of sub-images, half-images, transverse Talbot carpet, and
to the fact that in this type of diffraction, the geometric shadow,
and the near-field and far-field diffraction regimes are mixed
at various propagation distances. At the same time, the desig-
nation of the diffraction pattern on the transverse plane as the
self-image of the radial grating is incorrect, and the use of dark
fringes is meaningless. In another work, the diffraction of a
Gaussian beam from an out-of-center portion of an amplitude
radial grating has been previously considered and an evolution
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for the spatial profile of the beam was reported [19, 20]. Finally,
it is worth remembering that, we have recently presented a sim-
ple and comprehensive method by the aid of reciprocal vector
approach to take into account the central singularity and any
additional out-of-center singularities of the radial gratings in
formulating their structures and we have investigated the moiré
patterns of radial gratings consisting of out-of-center singulari-
ties [21].

To the best of our knowledge, the diffraction of vortex beams
from radial gratings has not been considered in the literature
so far. In the following we consider a very interesting subject,
the fusion of the Fresnel and Fraunhofer diffraction properties
with singular optics. Here we show that, by using a vortex beam
instead of a plane wave, the behaviour of diffraction patterns re-
markably changes. In this paper, a novel and reliable method for
determining the TC of vortex beams by diffraction from ampli-
tude radial gratings is reported. Also, we propose a convenient
optical communication method by translating the TC alteration
in intensity change.

2. PROPAGATION OF A LIGHT BEAM WITH AN INITIAL
COMPLEX AMPLITUDE SEPARABLE IN THE POLAR
COORDINATES

First, propagation of a light beam having complex amplitude
with a separable functionality in the polar coordinates is re-
viewed [17]. We consider ψ(r′, θ′; 0) as the complex amplitude
of the light field at input plane (z = 0), and ψ(r, θ; z) as the
resulted complex amplitude after a propagation distance of z, in
which (r′, θ′) and (r, θ) indicate polar coordinates on the input
and output planes, respectively. Separability of the complex
amplitude at z = 0 can be shown by

ψ(r′, θ′; 0) = f (r′) g(θ′). (1)

As g(θ′) is an inherently periodic function with the period
2π, it can be expanded by using Fourier series as

g(θ′) =
+∞

∑
n=−∞

gneinθ′ , (2)

where gn are the Fourier series coefficients. Now let us recall
definition of Hankel transform order n of f (r) [22]

Hn{ f (r)} = 2π
∫ +∞

0
f (r)Jn(2πρr)rdr, (3)

where Jn is the nth Bessel function of the first kind. By using
Fresnel integral we can show that [17]

ψ(r, θ; z) = h0eiαr2
+∞

∑
n=−∞

gn(−i)neinθHn{ f (r)eiαr2}, (4)

where h0 = 1
izλ exp(ikz) and α = π

zλ , in which λ is the wave-
length of the light beam and k = 2π

λ is the wave-number. More-
over after getting Hankel transform we should set ρ = r

λz . Eq.
4 stands in the near-field diffraction regime. In the Fraunhofer
approximation, Eq. 4 reduces to [22]

ψ(r, θ; z) = h0

+∞

∑
n=−∞

gn(−i)neinθHn{ f (r)}. (5)

As is apparent from Eqs. 4 and 5, the separability of the initial
complex amplitude is violated by the propagation.

3. NEAR- AND FAR-FIELD DIFFRACTION OF A VORTEX
BEAM FROM A SINUSOIDAL RADIAL AMPLITUDE
GRATING

Now, we use the above-presented formulation for the diffrac-
tion of a vortex beam from an amplitude radial grating having
sinusoidal profile in the near- and far-field regimes. Complex
amplitude of an optical vortex beam with an order l can be
written by

ψ(r, θ,−0) = (
r
w
)|l| exp

[
−( r

w
)

2
+ ilθ

]
, (6)

where w is the vortex beam radius parameter in which the max-
imum value of the intensity is located at an effective radius of

we f f = w
√
|l|
2 . This vortex beam passes through an amplitude

radial grating with a sinusoidal transmission profile of

t(r, θ) =
1
2
[1 + cos(mθ)], (7)

where m is the number of spokes of the grating. Complex ampli-
tude immediately after the grating can be written by

ψ(r, θ,+0) = t(r, θ) ψ(r, θ,−0), (8)

where −0 and +0 signify immediately before and after the grat-
ing, respectively (see Fig. 1). Then we can obtain

ψ(r, θ,+0) =
1
4
(

r
w
)|l|e−(

r
w )2

(2eilθ + ei(m+l)θ + e−i(m−l)θ). (9)

As ψ(r, θ,+0) is separable in the polar coordinates, by com-

paring with Eqs. 1 and 2 we conclude that f (r) = 1
4 (

r
w )|l|e−(

r
w )2

,
gl = 2, gm+l = g−(m−l) = 1, and other coefficients are zero. By
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Fig. 1. From left: intensity and phase patterns of a typical vor-
tex beam with l = +3 and w = 2mm, transmission profile of
a radial grating with m = 10, and transmitted intensity of the
vortex beam after the grating. All lengths are in millimeters.

using Eq. 4, we have

ψ(r, θ, z) = h0 ei(αr2+lθ) (10)

×{2(−i)
|l|

H|l| + (−i)m+leimθ Hm+l + (−i)m−le−imθ Hm−l},

where H|l| = H|l|{ f (r)eiαr2}, Hm±l = Hm±l{ f (r)eiαr2}, and fol-
lowing identity:

H−n{ f (r)} = (−1)nHn{ f (r)}, (11)

is used. By defining γ = 1
w2 − iα we get

f (r)eiαr2
=

1
4
(

r
w
)|l|e−γr2

. (12)

Now, using Hankel transform definition, Eq. 3, we have

H|l| =
π

2w|l|

∞∫
0

r|l|+1e−γr2
J|l|(2πρr)dr, (13)
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and using the following integral [23]:

∞∫
0

xν+1e−ax2
Jν(bx)dx =

bν

(2a)ν+1 e−
b2
4a , (14)

H|l| can be calculated as

H|l| =
1

4ρw|l|
(

πρ

γ
)
|l|+1

e−
π2ρ2

γ . (15)

Now again, by using Hankel transform definition and Eq. 12
we have

Hm±l =
π

2w|l|

∞∫
0

r|l|+1e−γr2
Jm±l(2πρr)dr, (16)

and using the following integral [23]:

∞∫
0

xµe−ax2
Jν(bx)dx =

Γ( ν+µ+1
2 )e−

b2
8a

ba
µ
2 Γ(ν + 1)

M µ
2 , ν

2
(

b2

4a
), (17)

where M indicates Whittaker function, Hm±l is calculated as

Hm±l =
e−

π2ρ2

2γ G±
4ρw|l|γs

Ms, m±l
2
(

π2ρ2

γ
), (18)

in which s = |l|+1
2 and G± =

Γ( |l|+m±l+2
2 )

Γ(m±l+1) . By substituting H|l|
and Hm±l in Eq. 10 we get

ψ(r, θ, z) = (19)

ψN × {2(−i)
|l|

Rse−
R
2 + Γ+Ms, m+l

2
(R) + Γ−Ms, m−l

2
(R)},

where R =
π2ρ2

γ = 1
γ (

πr
λz )

2 is a dimensionless complex pa-

rameter, Γ± = (−i)m±le±imθ G±, and ψN = ei(αr2+lθ+kz)e−
R
2

4irw|l|γs . As
Gamma functions is not defined for the negative integers, the
last equation is valid when |l| ≤ m. For the case l > m > 0
similarly we can get

ψ(r, θ, z) = (20)

ψN × {2(−i)
|l|

Rse−
R
2 + Γ

′
+Ms, l+m

2
(R) + Γ

′
−Ms, l−m

2
(R)},

where Γ
′
± =

Γ(2s± m
2 )

Γ(2s±m)
(−i)l±me±imθ . As well as, when l < −m <

0 we can get

ψ(r, θ, z) = (21)

ψN × {2(−i)
|l|

Rse−
R
2 + Γ”

+Ms, |l|−m
2

(R) + Γ”
−Ms, |l|+m

2
(R)},

where Γ”
± =

Γ(2s∓ m
2 )

Γ(2s∓m)
(−i)|l|∓me±imθ . Finally for the case l = 0,

Eq. 19 reduces to

ψ(r, θ, z) = ψN ×
[

R
1
2 e−

R
2 + Γ0 M 1

2 , m
2
(R) cos(mθ)

]
, (22)

where Γ0 =
Γ( m

2 +1)
Γ(m+1) (−i)m. At far-field regime only by replacing

R by a real dimensionless parameter R
′
= (πwρ)2 = (πwr

λz )2

and ψN by ψF = ei(lθ+kz)

4i (w
r )e
− R

′
2 same Eqs. of 19 – 22 can be

used.

Let us recall the Talbot distance of the conventional gratings

that is given by zT =
2p2

λ where p indicates period of the struc-
ture. In analogy, for a radial grating illuminated by a vortex
beam with an effective radius of we f f , we can define a spatial
period in the angular direction over the illuminated area by
p =

2πwe f f
m . Therefore based on this angular periodicity and

using we f f = w
√
|l|
2 , we get

zT =
|l|
λ

(
2πw

m

)2
=
|l|
m2 z0, (23)

where z0 = (2πw)2

λ . zT can be considered as a characteristic
distance for the Fresnel diffraction from a radial grating. More
details on the definition of zT for radial gratings can be found in
[17].

For an amplitude radial grating with m = 10 illuminated
by beams having l = 0,±3, the calculated intensity patterns
immediately after the grating and their corresponding near-field
diffraction patterns at a propagation distance equal to zT are
illustrated in Fig. 2. As is apparent, for the cases of the vortex
beams, spokes on the diffraction patterns experience a deflection
and get a spiral-like forms. For each of these cases, the deflection
direction depends on the twist direction (TD) of the vortex beam.
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Fig. 2. First row: intensity patterns immediately after an am-
plitude radial grating with m = 10 illuminated by vortex
beams of l = 0,±3. Second row: corresponding calculated
near-field diffraction patterns at the propagation distinct of zT .
All lengths are in millimeters (see Visualization 1).

In Fig. 3, calculated near-field diffraction patterns for an
amplitude radial grating having m = 15 illuminated by vortex
beams of l = ±10,±14,±15, and ±16 at a propagation distinct
of 2zT are shown. Here again, deflection direction of the spokes
determines the TD of the impinging optical vortex beam. In
addition, we see that on the optical axis the intensity has zero
values for all l 6= ±m and only for l = ±m its value switches to
a locally maximum value.

All aspects of the presented work are demonstrated in Visual-
ization 1. It presents the calculated diffraction patterns from an
amplitude radial grating with m = 10 illuminated by the vortex
beams with w = 2mm and l = ±3,±10 at different propagation
distances in the range from z = 0 to z = 10zT . For the cases
m = |l| = 10 by propagation, the beams’ energy are flowing to-
wards the optical axes and as a consequence the intensity value
becomes absolute maximum on the optical axis at the far-field
regime. All dimensions are in millimeters.
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Fig. 3. Near-field diffraction patterns of an amplitude radial
grating with m = 15 illuminated by vortex beams of l =
±10,±14,±15, and ±16 at the propagation distinct of 2zT (see
Visualization 1). Plot shows their intensity profiles. All lengths
are in millimeters.

Fig. 4 shows calculated and experimentally recorded Fraun-
hofer diffraction patterns from two amplitude radial gratings
with m = 5, 10 illuminated by vortex beams having various l.
Here, we present these experimentally recorded patterns for a
better comparing with the corresponding calculated patterns.
The details concerning experimental patterns will be presented
in Section 4. As is apparent, far-field diffraction patterns are
not sensitive to the TD but in this regime on the optical axis the
intensity value for each of pattern when |l| = m is maximized
and for the other cases its value is zero.

| | = 2 | | = 4 | | = 7| | = 5

| | = 3 | | = 12| | = 10

=5
=10

| | = 5

Fig. 4. Calculated (first and third rows) and corresponding
experimentally recorded (second and forth rows) Fraunhofer
diffraction patterns from two amplitude radial gratings with
m = 5, 10 illuminated by vortex beams having different values
of l (see Visualization 1).

Therefore here again, we show that when the topological
charge of the vortex beam and the radial grating spokes num-

ber are equal, say l = ±m, intensity on the optical axes of the
Fraunhofer pattern gets an absolute maximum value and for
the other cases, l 6= ±m, the intensity value on the optical axes
remains zero. This feature can be used in optical communica-
tion. For this purpose, information can be coded on a train of
temporally-structured light beam that is formed by switching
between two vortex beams having different TC values of l1 and
l2, and decoding can be done by measuring the intensity values
on the optical axis when the train of the light beam is diffracted
from an amplitude radial grating having an m equal to l1 or l2.
In other words, an alteration between two vortex beams in the
input plane is translated to a binary change in the intensity of
the output light on the optical axis, in real time.

Another interesting result is the accessing to an intense and
wide-length light-bar on the optical axis that might find other
applications, for example, this needle-like optical beam could be
used in particle trapping [24], fluorescence microscopy [25, 26],
and material processing [27].

In Fig. 5, for different propagation distances, the intensity
profiles along a radial line over the calculated diffraction pat-
terns are illustrated. In all plots, the intensities are normalized to
the maximum value of the intensity over the resulted diffraction
pattern. We see that, for |l| 6= m, at all propagation distances,
the value of the intensity on the optical axis remains zero. Also
for the case |l| = m we see that, the intensity on the optical
axis immediately gets a locally maximum value, by increasing
the propagation distances its value increases, and after a given
propagation distance its value gets absolute maximum. This
transition from a locally to an absolute maximum intensity for
different values of ms and ls are shown in Fig. 6(a). It is shown
that, the least prorogation distance in which the intensity on the
optical axis becomes absolute maximum, increases by increas-
ing values of m and l. The efficiency of conversion of power of
incident vortex beam into on-axis spot when m = l can be deter-
mined by using the calculated Fraunhofer diffraction pattern for
different values of m.

4. ON-AXIS SPOT FORMATION

In the following we show that, the on-axis spot is obtained when
m of the radial amplitude grating is same as the order of the
beam’s topological charge. In addition, we show that how the
intensity value is zero when m 6= |l|.

By replacing R
′
= (πwr

λz )2 and ψF = ei(lθ+kz)

4i (w
r )e
− R

′
2 in Eq. 19

we get

ψ(r, θ, z) = ψ0(
e−R′/2√

R′
) (24)[

2(−i)
|l|

R′se−R′/2 + Γ+Ms, m+l
2
(R′) + Γ−Ms, m−l

2
(R′)

]
,

where ψ0 = z0ei(αr2+lθ+kz)

16πiz . This equation presents the Fraunhofer
diffraction when |l| ≤ m. The Whittaker function Mµ,ν(x) can
be expressed in terms of the Kummer function (of the first kind)
M(a, b, x) = 1F1(a; b; x) as follow [28]:

Mµ,ν(x) = e−x/2xν+1/2 M(ν− µ +
1
2

, 2ν + 1, x). (25)

Now, using this expression, Eq. 24 can be rewritten in the
following form:
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Fig. 5. Normalized intensity profiles along a radial line over
the calculated diffraction patterns resulted by passing of differ-
ent vortex beams with l = 4, 9, 10, 11 through an amplitude
radial grating with m = 10. Plots at different rows are corre-
spond to different propagation distances.
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Fig. 6. (a) Normalized intensities on the optical axis over the
calculated diffraction patterns resulted by passing of different
vortex beams through different amplitude radial gratings with
various m and l combinations, (b) ratio of on-axis intensity
to the out-of-axis local maximum intensity in terms of the
propagation distance for the same values of m used in (a). The
plot legends in (b) are the same of (a).

ψ(r, θ, z) = ψ0e−R′{2(−i)
|l|

R′ |l|/2 + (26)

Γ+R′
m+l

2 M(a+, b+, R′) + Γ−R′
m−l

2 M(a−, b−, R′)},

where a± = m±l−|l|
2 and b± = m± l + 1. The behavior of the

diffracted light beam on the optical axis can be explained easily
by this equation. On the optical axis R′ = 0 and as M(a, b, 0) = 1,
Eq. 26 explicitly shows that the light beam amplitude vanishes
on the optical axis, unless the case l = ±m. For the case l = ±m,
one of the second or third terms is non-zero and therefore the
light beam amplitude on the optical axis gets a non-zero value.
Thus on-axis spot formation is mathematically explained.

From two points of views the focusing behavior of the beam
into the on-axis spot can be investigated. In the following, we
discuss on the reliability of the method for discrimination of two
modes of vortex beams with m = l and m 6= l. Also, we define
and calculate power conversion efficiency by the ratio of power
converted into the on-axis spot to the whole beam power. In
some potential applications value of this efficiency would be
important. The proposed method in principle has a high value
of reliability for discrimination of two modes of vortex beams
with m = l and m 6= l. As is shown above for the case m 6= l,
the intensity value over the optical on-axis in theory is zero and
in the measurement is equal to the dark noise of the detection
system. Therefore, a vortex beam with m = l is discriminable
from another beam with m 6= l when the measured value of the
intensity over the on-axis spot to be greater than the dark noise.
This condition is accessible very easily. In Fig. 6(b) calculated
ratio of on-axis intensity, I(r = 0), to the out-of-axis local max-
imum intensity, Imax(r 6= 0), in terms of propagation distance
for the different values of m are illustrated. As is apparent the
value of on-axis intensity is several times greater than the value
of out-of-axis local maximum intensity. This fact guarantees that
for the case of m = l the intensity over the optical axis is very
greater than the dark noise. We have also calculated the power
conversion efficiency defined by the ratio of power converted
into the on-axis spot to its total value. In Fig. 7 calculated power
conversion efficiency for different values of m are shown. These
calculated values are remarkably greater than the efficiency of
the sorting of orbital angular momentum states of light with
the hologram based detection methods when a large number of
modes are detected simultaneously [29–31].
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Fig. 7. Calculated efficiency of the power conversion into the
on-axis spot when m = |l| for different values of m at the
Fraunhofer regime.

Another interesting physical effect is the generation of petal-
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like beams when m = 2 |l| (see Fig. 4 second column, third
row). We believe that this interesting effect also might find
applications in laser beam manipulations and laser printing,
optical communications, and so on. This topic is under study,
and corresponding detail mathematical analysis and its results
will be published elsewhere.

Furthermore, it seems that by rotating the radial gratings
some interesting effects such as a frequency shift for the vortex
beams passing through the radial gratings can be observed [32].

5. EXPERIMENTAL WORKS AND RESULTS

We have examined the proposed method experimentally by im-
pinging different vortex beams on a number of amplitude radial
gratings. Schematic diagram of the experimental setup is shown
in Fig. 8. We produced vortex beams via a conventional SLM.
The amplitude radial gratings’ structures were constructed by a
lithography method on transparent plates with a spatial resolu-
tion of 1200 dpi. In the experiment, a collimated wavefront of
a He–Ne laser passes through the SLM and resulted first order
diffraction beam is used as a votex beam. It passes through
the radial grating. By using a lens, we get both Fresnel and
Fraunhofer diffraction patterns by a suitable magnification on a
CCD camera. Different propagation distances are adjusted by
displacing the CCD camera along optical axis. The Fraunhofer
diffraction pattern is recorded by the CCD when its sensitive
area is placed at the vicinity of the focal plane of the lens. In Fig.
4, second and fourth rows, show the experimentally recorded
Fraunhofer diffraction patterns from two amplitude radial grat-
ings having three different spokes numbers of m = 5, 10 illumi-
nated by different vortex beams.

By getting away from the focal plane of the lens, the Fres-
nel patterns with desired magnification are decoder. In Fig. 9,
recorded near-field diffraction patterns of two amplitude ra-
dial gratings with m = 10, 15 in the illuminating by the vortex
beams having different l are shown. These results verify all
above-mentioned calculated predictions. We see that for the
cases |l| = m = 10 and |l| = m = 15 intensities on the optical
axis are locally maximum but for other cases they are zero.

In summery, we showed that the Fresnel diffraction of a
vortex beam from a given amplitude radial grating visualizes
the TD of the beam and by trying a set of gratings with different
spokes numbers, again visually the TC can be determined.

Also, we showed that based on the Fraunhofer diffraction
of vortex beams from amplitude radial gratings, an alteration
between two vortex beams in the input plane can be translated
in real time to a binary change in the intensity of the output light
on the optical axis.

He-Ne Laser

S.F.

Lens

SLM

PC

Lens

Mask

RG

Driver

Fraunhofer
Plane

Fig. 8. Schematic diagram of the experimental setup.
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Fig. 9. Experimentally recorded near-field diffraction patterns
of two amplitude radial gratings with m = 10, 15 in the illumi-
nation by the vortex beams having different values of l. First
and third rows are for positive l and second and forth rows for
the negative values of l.

6. CONCLUSION

We presented a simple, real-time, and calculate-free method for
determining TC and TD of the optical vortex beams. The TD for
a given vortex beam can be visually determined by the deflection
induced on the spokes of a given amplitude radial grating at the
near-field diffraction. When radial grating’s spokes number is
equal to the TC of the beam, intensity over the optical axis is
maximum, therefore an alteration between two vortex beams
with |l| = m and |l| 6= m can be translated to a binary change in
intensity of the output light. Presented method can be used in
optical communications.
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