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We report on applications of moiré deflectometry in measurements of the anisotropy and scaling of the phase
structure function (PSF), obtained after passing a laser beam through an indoor enclosure containing convective air
turbulence. We combine the use of two telescopes, with a two-channel wavefront sensor based on moiré deflectome-
try, to attain high sensitivity and resolution to fluctuations in the wavefront phase, caused by turbulent fluctuations
in the enclosure. The measurements of the wavefront PSF along two directions perpendicular to the direction of
the light beam propagation at different heater temperatures show that the convective air turbulence is anisotropic
turbulence, where the value of the anisotropy increases with increasing temperature gradient. Various models are
fitted to the measured PSFs, and we find that the turbulent is also non-Kolmogorov, in which, for the separation
distances of two points on the wavefront less than 10 cm, the von Kármán PSF is the best fit to the experimental data.
For higher values of separations, the experimental data do not fit with existing models. By fitting the von Kármán
PSF on the data, we estimate values of the refractive index structure constant, C2

n , as well as the outer scale of the tur-
bulence. The value of the outer scale decreases with increasing temperature of the heater up to approximately 50◦C,
where it saturates, while the value of C2

n monotonically increases. Over the complete range of heater temperatures,
from 40◦C to 160◦C, the Rayleigh number, Ra, for the enclosed air flow varied from 5.80× 108 <Ra< 5.89× 109

so that all measurements were conducted in a state of developed convective turbulence. © 2022 Optica Publishing

Group

https://doi.org/10.1364/JOSAA.464285

1. INTRODUCTION

A complete understanding of turbulence remains elusive due to
the complexity of the underlying equations of motion, as well
as the inability of fully resolved direct numerical simulations to
adequately follow turbulence at the intensity levels routinely
found in large-scale natural or engineering flows [1]. For this
reason, there has always been an exceptional need for guidance
from experiments and, in turn, the development of novel meth-
ods of measuring the statistical properties of turbulent flows
[2–4]. Various phenomenological models have been developed
that describe quite well the main features of atmospheric turbu-
lence, including the Kolmogorov, Tatarskii, and von Kármán
models, differing in their specification of the inner and outer-
scale parameters (the smallest and largest scales of turbulence,
respectively) [5]. The von Kármán–Tatarskii model combines
features of the latter two models and is sometimes called the

modified von Kármán model. In all these models, it is proposed
that the turbulence is isotropic and homogeneous; an approxi-
mation that we point out is rarely—if ever—completely satisfied
in either nature or laboratory experiments. Experimental studies
show that the statistics of wavefront phase propagation through
the atmosphere, or in controlled laboratory confinement of
turbulent flows, do not always precisely obey the power laws
associated with the Kolmogorov model of turbulence [6–12],
even under conditions and in the range of scales where one
might expect homogeneity and isotropy to hold [13–23].
Thus, several models such as the Tatarskii, Greenwood, Pump,
von Kármán, and modified von Kármán have been proposed
to represent the statistical behavior of the turbulence phase
fluctuations. Accordingly, Gudimetla et al . [24] derived an ana-
lytical expression for the long amplitude correlation function
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for a plane wave propagating through an anisotropic non-
Kolmogorov turbulent atmosphere. Toselli and Korotkova [25]
introduced a model for a non-classic spatial power spectrum
involving anisotropy along two mutually orthogonal axes
transverse to the direction of the beam propagation. Yao et al .
[26] investigated the effect of anisotropic non-Kolmogorov
turbulence on the propagation of the stochastic electromag-
netic beam. They also explored the outcome of an anisotropic
parameter on the spectral density, spectral degree of coher-
ence, and spectral degree of the polarization of the beam. Xiao
et al . [27] extended the Gaussian beam theory for propagation
through Kolmogorov turbulence to anisotropic turbulence
along with horizontal directions. They also studied the effects of
the different spectral slopes on beam propagation.

Much research has been done on the propagation of differ-
ent wavefronts from non-Kolmogorov turbulence. Wanjun
et al . [28] derived the average intensity of Bessel Gaussian
beams propagating through non-Kolmogorov turbulence
based on the Rytov theory. Ma et al . [29] derived an analytical
expression for rectangular multi-Gaussian Schell-model array
beams propagating through free space and non-Kolmogorov
turbulence. Huang et al . [30] investigated the effect of aniso-
tropic non-Kolmogorov turbulence on the evolution behavior
of the average intensity and coherent vortices for Gaussian
Schell-model vortex beams.

Although various effects of atmospheric and indoor convec-
tive turbulence on some features of the light beam propagating
through them have been investigated [16,20,23,31–33], based
on our knowledge, until now there have been no comprehensive
studies on the effect of a two-dimensional (2D) temperature
gradient on the statistical properties of the phase structure func-
tion (PSF) of a light beam wavefront after propagating through
a turbulent medium. In the work presented below, we report on
applications of a two-channel moiré deflectometry-based wave-
front sensor for measuring the power-law scaling and anisotropy
of the PSF corresponding to controlled laboratory convective air
turbulence, in the presence of weak to strong 2D temperature
gradients.

It is worth mentioning that in four other works the same
sensor was used for investigating the wavefront distortions
induced by atmospheric turbulence [12], the inhomogeneity of
atmospheric turbulence at day and night times [18], the effects
of the source temperature and its distance on the statistical
behavior of the convective air turbulence [22], and the annular
Zernike polynomials behavior in convective air turbulence in
the presence of the 2D temperature gradient [23].

In comparison with a Shack–Hartmann wavefront sensor
[34], the two-channel moiré deflectometry-based wavefront
sensor used here is relatively low cost. For instance, the sensor
gratings can be easily designed with simple computer software
and can be printed on plastic paper with a commercial printer.
This method also offers some flexibility, since its dynamic range
and sensitivity are adjustable by merely changing the separation
of the gratings and the angle between the rulings of the gratings
in both channels, respectively. The spatial resolution of the
wavefront sensing is also adjustable by means of bright, dark,
and virtual traces for given moiré fringes with no cost in mea-
surement precision. This sensor can even detect the presence
of optical vortices on the wavefront that might be generated

in a highly turbulent condition [35]. The main drawback of
the moiré deflectometry-based wavefront sensor is the need
for a high-level intensity beam, and, therefore, for low light
applications as one would normally expect in astronomy, highly
sensitive detectors are required. However, to decrease the energy
loss, moiré deflectometers can be setup with phase gratings.

2. GOVERNING EQUATIONS

The phase variance between two separate points on the
wavefront is defined as the PSF and is given by [36]

Dφ(ξ)=
〈
|φ(r )− φ(r + ξ)|2

〉
, (1)

where φ is the wavefront phase, ξ is the separation distance
between two points on the wavefront, and 〈...〉 represents
an ensemble average. Fried has shown that the PSF in the
Kolmogorov model of atmospheric turbulence is given by [36]

Dφ(ξ)= 6.88

(
ξ

r0

)5/3

, (2)

where r0 is Fried’s seeing parameter, and l0 < ξ < L0, where L0

and l0 are the outer and inner-scale parameters, respectively.
The anisotropic nature of turbulence can be taken into

account by modifying the PSF, leading to [37]

Dφ(u)= γβu

(
u
ρ0u

)βu−2

, u = x , y , (3)

where βu , γβu , and ρ0u are, respectively, the exponent of the
power spectrum for the index of refraction fluctuations, the
function of the power spectrum exponent, and the general-
ized Fried’s “seeing” parameter in the horizontal and vertical
directions.

In this work, we have measured Dφ(x ) by observing the
difference of phase between pairs of points, with a given value of
separation in the horizontal direction, x , displaced spatially on
the reconstructed wavefront on the second telescope aperture.
We have done these calculations for all of the successive recon-
structed wavefronts. Now, by repeating the process for other
possible values of x , Dφ(x ) can be determined as a function of
x . A similar process is used for measuring Dφ(y ), where y is the
separation in the vertical direction.

3. EXPERIMENTAL WORKS AND RESULTS

A schematic diagram of the experimental setup is shown in
Fig. 1. In the experiment, the second harmonic of a CW diode
pumped Nd− Y3Al5O12 (YAG) laser beam with a wave-
length of 532 nm enters the first telescope (a 14 in. Celestron
Schmidt-Cassegrain telescope) and is expanded to a diameter
of 20 cm and recollimated by it before passing horizontally
through an enclosure of convectively turbulent air, formed by
imposing a vertical temperature (density) gradient. For this
purpose, we used a flat plane heater with an upper surface area of
50 cm× 100 cm. The temperature at the heater was controlled
and was varied in a range from 28◦C to 160◦C with a step of
10◦C. In steady-state condition, the temperature fluctuations
were less than 1◦C. We want to point out that under steady-state
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Fig. 1. Top: schematic diagram of the experimental setup. Bottom: integrated instrument. DF, FL, CL, BS, M, D, and PL denote the neutral den-
sity filter, focusing lens, collimating lens, beam splitter, mirror, diffuser, and projecting lens, respectively. G1, G2, G3, and G4 stand for the gratings.

conditions a horizontal component of the temperature gradient
appeared due to the finite width of the heater’s surface. A set
of digital thermometers were used to measure the temperature
gradients [23]. According to the data collected by the thermom-
eters, the temperature gradients in the vertical and horizontal
directions were not equal. The temperature and temperature
gradient fluctuations for the same turbulent medium can be
found in Figs. 2 and 3 of Ref. [23]. The height of telescopes from
the plane of the heater was 80 cm.

The intensity of the turbulence was determined from the
Rayleigh number Ra defined as

Ra=
gβ(Ts − T∞)`3

να
, (4)

where g is the acceleration of gravity, β is the isobaric thermal
expansion coefficient of air, Ts and T∞, respectively, are the tem-
perature at the heater surface and the flow at a height `= 80 cm
above it, ν is the kinematic viscosity, and α is the thermal
diffusivity of the air. For different measurements, the mean tem-
perature values at the heater surface and path of the laser beam
having a height `= 80 cm from the heater and the correspond-
ing Rayleigh numbers are reported in Table 1. For the heater
temperatures considered in this study, the Rayleigh number is
in the range of 5.80× 108 < Ra< 5.89× 109, which is in the
developed turbulent regime [38].

The length of the heater was parallel to the path of the laser
beam. After passing through the turbulent area, the beam
enters the second telescope’s aperture (a Meade 8 in. LX200

Table 1. Rayleigh Number of the Convective Air
Turbulence

Ts (◦C) T∞ (◦C) Ra Ts (◦C) T∞ (◦C) Ra

40 29.2 5.80× 108 110 32.3 3.75× 109

50 29.6 1.05× 109 120 32.5 4.19× 109

60 30.3 1.51× 109 130 32.6 4.64× 109

70 30.5 1.97× 109 140 33.4 5.04× 109

80 31.5 2.4× 109 150 33.6 5.47× 109

90 31.7 2.86× 109 160 33.9 5.89× 109

100 32.2 3.29× 109

GPS Schmidt-Cassegrain telescope), separated from the first
telescope by 150 cm.

The beam was subsequently collimated by a positive lens
and passed through a beam splitter and a pair of moiré deflec-
tometers installed parallel and close together. Directions of the
grating rulings were almost parallel in each moiré deflectometer
but were perpendicular in the two channels. The grating holders
were held on rotary mounts, which could be rotated about the
optical axis to adjust the angle between the grating rulings. In the
experimental setup shown in Fig. 1, G2 and G4 were installed
at a distance of 37.5 cm from G1 and G3, respectively. All the
gratings were identical and had a ruling period of 0.1 mm. For
different turbulent strengths, we considered an angle of 4.2◦

between the grating rulings in both moiré deflectometers. For
this case, the number of the moiré fringes was about 15 (as seen
in Fig. 2). Moiré patterns were formed on a plane where the
second grating of the moiré deflectometers and a diffuser were
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installed. The moiré patterns from both channels are projected
onto a CCD camera. For a displacement of the self-image in
a direction normal to the grating rulings, moiré fringes were
shifted in a direction normal to the moiré fringe direction [39].
It is worth mentioning that the scattering effect of the diffuser
helps us image exactly the plane of the second gratings of the
moiré deflectometers (where the moiré patterns formed) on
the CCD’s sensitive area. The deformation of the moiré fringes
caused by the turbulence can be measured by tracing the imaged
moiré fringes. The laser beam intensity was reduced by a neutral
density filter to a level below the saturation level of the CCD.
Successive moiré patterns are recorded by the CCD camera
(model DCC1545M, high-resolution USB2.0 CMOS camera,
Monochrome) and transferred to a computer to allow temporal
fluctuations of the wavefront phase to be measured with high
accuracy. The sampling rate was 30 frames/s, and the exposure
time for a frame was 1 ms. Displacements of the moiré fringes
in the recorded patterns correspond to the fluctuations of two
orthogonal components of the angle of arrival (AA) across the
wavefront. Since the AA components, αx and αy , are equal
to the incident wavefront gradients in the x and y directions,
respectively, the incident wavefront gradients at a given point are
determined by [39]

[αx , αy ] =
f ′

f
d
zk

(
1xm

dm
+
1ym

d ′m

)
, (5)

where f is the second telescope’s focal length, f ′ is the focal
length of the collimating lens, d is the gratings’ ruling period,
zk is the gratings’ distance, dm is the moiré fringes spacing, and
1ym and1xm are the moiré fringe shifts in the first and second
channels, respectively. As is seen from Eq. (5), by increasing the
gratings’ distance, decreasing the period of the gratings d , or
increasing the moiré fringe spacing dm , the measurement pre-
cision of AA fluctuations can be improved. Another improving
factor is f ′/ f , which appears due to the use of the telescope.
Since the moiré fringe spacing dm is given by d

2 sin(θ/2 , it can
be easily changed by changing the angle between the grat-
ings’ rulings θ . A change in the value of θ , however, affects the
value of dm , and this in turn affects the spatial resolution of the
measurements.

In the current research, we have used d = 0.1 mm,
f = 200 cm, f ′ = 20 cm, and zk = 37.5 mm. The moiré pat-
tern in each channel consists of about 404 pixels× 404 pixels,
and dm was covered by 26 pixels in both channels. By con-
sidering that the minimum measurable displacement of a
fringe trace in the CCD’s plane within sub-pixel accuracy is
δymmin = δxmmin = 1 pixel/10 [39], the minimum measurable
AA fluctuation is 1.02× 10−6 rad or 0.21 arc s.

On the other hand, if we assume that the maximum meas-
urable displacement of a trace is equal to half the moiré fringe
spacing, (1xm

dm
)min = (

1ym
d ′m
)min =

1
2 , according to Eq. (5),

AA fluctuations in the range of − 1
2

f ′

f
d
zk

to + 1
2

f ′

f
d
zk

would be
measured. Thus, for the above-mentioned values of the exper-
imental parameters, one can measure AA fluctuations in the
range of−27 to+27 arcsec without making any adjustment in
the setup.

The traces of the bright and dark vertical and horizontal
moiré fringes and first-order virtual traces were derived from

about 15 moiré fringes shown in each channel of the wavefront
sensor. The traces of points with intensities equal to the mean
intensity of the adjacent bright and dark traces are the so called
the first-order virtual traces [39]. In a moiré pattern, there are
15 bright moiré fringes, and between any two of them there is a
dark moiré fringe. We also consider position of the mean inten-
sities between two adjacent bright and dark moiré fringes as a
first-order virtual trace. Therefore, the number of virtual fringes
is 28. Now, in either the vertical or horizontal direction, we have
57 traces, and, in two directions, their intersection points can
form an array of maximum 55× 55 points. In practice, we do
not have access to some of the intersection points because they
correspond to the central area and corners of the moiré patterns.
It is worth noting that the spatial resolution of the phase mea-
surements is limited by the number of moiré fringes covering
the full aperture of the second telescope and the number of
virtual moiré fringes between two adjacent moiré fringes. By
observing the fluctuations in successive frames, the evolution
of the wavefront shape was determined. At given temperature
of the heater, we have recorded at least five sets of data. Each
set of data was collected in 66 s and contained 2000 frames. In
these experiments, 1677 intersection points of the 15 bright
and 14 dark moiré fringes and 28 first-order virtual fringes were
used for wavefront reconstruction. The distance between two
adjacent intersection points corresponds to 3.1 mm in real space
on the second telescope’s aperture plane. Three typical recorded
frames at three different values of the heater temperature, as well
as their corresponding reconstructed wavefront surface plots,
are shown in Fig. 2. The background movie of Fig. 2 contains
300 successive recorded frames and corresponding plots of the
reconstructed wavefront surface (Visualization 1). Since the
wavefront slopes were determined exactly on the intersection
points, using the Southwell numerical integration method
and the zonal wavefront reconstruction algorithm, we have
reconstructed the wavefront phase [40,41]. See [12,23,39] for
more details on the wavefront surface reconstruction. A similar
method was used for studying the dynamic behavior of thermal
distortions of the wavefront in a high-power thin-disk laser [42].

Figure 3 shows values of Dφ(x ) and Dφ(y ) calculated from
measurements of the reconstructed wavefront over the second
telescope’s aperture for different heater temperatures. According
to the theoretical studies [5], the PSF asymptotically tends to
double the phase variance at large separation distances, where
the correlation between two points on the wavefront is zero.
Figure 4 shows the PSFs and their corresponding double of
calculated phase variances for the heater temperatures of 40◦C,
80◦C, 120◦C, and 160◦C. As is seen, the values of the PSFs
asymptotically tend to these values at large separation distances.

In Fig. 5, some of the experimental data of Fig. 3 and the fit-
ting curves are shown. We have fitted the generalized power-law
exponent, Eq. (3), to the experimental data in the range of 0–
2.2 cm. For almost all temperatures, the slopes of the structure
functions rapidly decrease after this distance. The measured
values of the power-law exponent of the fitted lines are shown on
the plots. Comparing the fitted power spectrum exponent with
the Kolmogorov model, it is seen that the measured PSFs do not
obey the power laws associated with the Kolmogorov model.

From the data presented in Fig. 3, it is also easy to investigate
that the convective air turbulence is anisotropic turbulence. To

https://doi.org/10.6084/m9.figshare.19807639
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Fig. 2. Three typical recorded frames and corresponding reconstructed wavefronts at three different heater temperatures. The background movie
contains 300 corresponding successive frames (Visualization 1).
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Fig. 3. Calculated PSFs from the reconstructed wavefront over the second telescope’s aperture at different heater temperatures for the vertical and
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show the anisotropy of the PSFs in the vertical and horizontal
directions, the differences between Dφ(x ) and Dφ(y ) are cal-
culated and plotted in Fig. 6. As is seen, the anisotropy in the
statistical properties of the light beam propagating perpendicu-
lar to a 2D temperature gradient increases with increasing values
of the gradients. In addition, the anisotropy rapidly increases
at the smaller separation distances and almost saturates at the
higher distances.

We have investigated the correlation between the experimen-
tally obtained data and various other turbulence models:

• The Tatarskii and the Kolmogorov PSF [36]:

DT
φ (ξ)= 6.88(ξ/r0)

5/3. (6)

• The Gaussian PSF [43]:

DG
φ (ξ)= 0.391C 2

n k2Lχ−5/3
G {1− exp[−(ξ 2/r 2

0 )]}, (7)

where k = 2π
λ

, χG =
2π
L0

, and L is the propagating beam length.
L0 is the outer scale of turbulence, andλ is wavelength.

• The von Kármán PSF [43]:

https://doi.org/10.6084/m9.figshare.19807639
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6
(χK ξ)

]
,

(8)
where 0 is Gamma function, χK =

2π
L0

, and K is a modified
Bessel function of the second kind.

• The Greenwood PSF [44]:

DGr
φ (ξ)= 6.88

(
ξ

r0

)5/3

2 F3

(
11

12
,

17

12
;

11

6
,

11

6
,

1

2
; −

ξ 2χ 2
Gr

4

)

+32.89(χGrr0)
−5/3

[
1− 2 F3

(
1

12
,

17

12
;

1

6
,−

1

3
, 1; −

ξ 2χ 2
Gr

4

)]

−2.27ξχGr

(
ξ

r0

)5/3

2 F3

(
17

12
,

23

12
;

7

3
,

7

3
,

3

2
; −

ξ 2χ 2
Gr

4

)
,

(9)

whereχGr = 3.349/L0 and p Fq is the generalized hypergeomet-
ric function.

In Fig. 7, different theoretical models are fitted on the experi-
mental PSFs of Fig. 3. The fitted plot can be divided into almost
three sections having different slopes. In the fitting process, the
Kolmogorov, Gaussian, Greenwood, and von Kármán models
were fitted to the experimental data in ranges of 0–2.2 cm,
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Fig. 7. Experimental PSF and different theoretical models fitted on the experimental data.

Table 2. Mean Square Error of Different Fitted Models

Heater
Temperature
(◦C) Model

MSE for
Fitting
Dφ(x)

MSE for
Fitting
Dφ( y)

40 Kolmogorov 0.0062 0.0058
40 Gaussian 1.8522× 10−4 3.1126× 10−4

40 von Kármán 5.5161× 10−6 5.8435× 10−5

40 Greenwood 6.6630× 10−6 9.2386× 10−5

120 Kolmogorov 0.2627 0.1933
120 Gaussian 0.0085 0.0081
120 von Kármán 0.0038 0.0018
120 Greenwood 0.0032 0.0022
160 Kolmogorov 0.9840 0.6417
160 Gaussian 0.0379 0.0254
160 von Kármán 0.0079 0.0077
160 Greenwood 0.0230 0.0137

0–5 cm, 0–5 cm, and 0–10 cm, respectively. If the models were
fitted at greater distances, the mean square error (MSE) of the
fittings would significantly be increased. The MSEs of the vari-
ous models in the mentioned ranges are reported in Table 2. As is
seen, the von Kármán model has the best fit to the experimental
data because it has the least MSE and is fitted in a larger range
than the other models. For the separation values larger than
10 cm, there is no consistency between the experimental data
and the existing models.

As has been mentioned above, in Figs. 3–5 and 7, there are
three spatial scales in the measured structure functions. Changes
in the slopes occur at about 3 and 12 cm, while saturation sets
in at about 16 cm. None of the single-scale models—starting
with Eq. (6)—are capable of reproducing this complicated

behavior. This is demonstrated in Fig. 7, where none of the
models provide a reasonable fit to the data at the full 18 cm
range. However, as mentioned above, the von Kármán model
provides a reasonable fit to the data in the first 10 cm range. Such
multi-scale structure functions may arise through the statistical
inhomogeneity of the medium and, therefore, can be used for
estimation of the size of the volume where the turbulence can
be considered as statistically homogeneous. Investigating the
physical reasons for such multi-scale structure functions can be
the subject of new research efforts.

Values of C 2
n and the outer scale of the turbulence for different

heater temperatures are estimated by fitting the generalized form
of the von Kármán PSF,

DK
φ (u)= au

[
1−

2
1
6

0( 5
6 )
(χKu

u)
5
6 K 5

6
(χKu

u)

]
, u = x , y ,

(10)
to the data of Fig. 3, for the horizontal and vertical separations,
respectively. Results are shown in Fig. 8. As is seen, the value of
the outer scale decreases for an increase in the temperature of the
heater up to approximately 50◦C, where it saturates, while the
value of C 2

n monotonically increases.

4. CONCLUSION

In conclusion, this work has illustrated the effect of a 2D tem-
perature gradient on the statistical properties of PSF of a light
beam propagating horizontally through an enclosure of con-
vectively turbulent air. The statistical properties of the optical
turbulence are investigated through analysis of Dφ(x ) and
Dφ(y ) for different temperatures of the heater. Experimental
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Fig. 8. Estimated values of C 2
n and the outer scale of the turbulence in different heater temperatures or the corresponding Rayleigh numbers.

results show that the plots of the PSF have three different sec-
tions with different slopes. For values of the separation distances
inside the first and second sections, the von Kármán PSF is the
best fit for the experimental data. By fitting the von Kármán PSF
on the data, we estimate values of C 2

n and the outer scale of the
turbulence. Values of the outer scale decreased with increasing
temperature of the heater, up to 50◦C, after which it was almost
saturated. Values of C 2

n also increased with increasing heater
temperatures, albeit without the same saturation.

Finally, we find significant anisotropy for the PSF for increas-
ing temperature gradients and separation distance, and, for val-
ues of the latter greater than 10 cm, there is no consistency of the
data with any existing model for the PSF.
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