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In this work, for the first time to the best of our knowledge, an investigation on the moiré patterns of super-
impositions of two radial or two circular gratings consisting of topological defects and their mutual superimpo-
sitions with each other, or with linear forked gratings or defected zone plates, is presented. For characterization of
the resulting moiré patterns, we use the reciprocal vectors approach. In this approach, by considering local spatial
frequencies for the superimposed structures, their reciprocal vectors are determined from the transmission func-
tion of the structures. The local reciprocal vector of the resulting moiré pattern at a given point is determined in
terms of the local reciprocal vectors of the superimposed structures defined at the same point. In this approach,
the topological singularities of the superimposed structures are described by the azimuthal component of the
reciprocal vectors. This formulation is very simple, uniform, and comprehensive. In this work, we offer a detailed
discussion on the different resulting moiré patterns for the above-mentioned superimpositions and some potential
applications of the proposed superimpositions are introduced. In addition, different resulting moiré patterns are
simulated. © 2016 Optical Society of America

OCIS codes: (120.4120) Moiré techniques; (110.2650) Fringe analysis; (260.6042) Singular optics; (350.2770) Gratings; (330.7310)

Vision.
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1. INTRODUCTION

Recently, we introduced a new and very simple formulation for
analyzing moiré patterns of linear forked gratings (LFGs) and
Fresnel zone plates (ZPs) possessing topological defects by the
reciprocal vector approach [1]. There, we considered a local
spatial frequency for a given periodic or semi-periodic structure
and determined its reciprocal vector from the transmission
function of the structure. For a given point, the reciprocal vec-
tor of the resulting moiré pattern of the superimposition of two
periodic structures was expressed in terms of the reciprocal vec-
tors of the superimposed structures for that same point. In this
formulation, the topological singularities of the gratings were
described by the azimuthal component of the reciprocal vectors
used in the sinusoidal amplitude transmission functions of the
superimposed structures. We showed that the moiré patterns
resulting from the static superposition of different periodic
structures possessing topological singularities could be charac-
terized using only the reciprocal vector equation of the resulting
moiré patterns. With this formal tool in hand, we approached
different kinds of superimposition of LFGs and/or defected

zone plates (DZPs). Examples of moiré fringe calculations were
presented and images from simulations using MATLAB pro-
gramming illustrated the calculations. We also offered a de-
tailed discussion based on their theoretical tools. The proposed
approach is applicable in the study of the superimposition of a
wide class of defected gratings or moiré patterns of semi-
periodic structures in which their reciprocal vectors change
locally. This approach can also be used in the study of the moiré
fringes formed by superimposing linear gratings with slowly
varying parameters and moving periodic structures [2,3].
Because of the wide range of applications of radial and circular
gratings and their moiré patterns, in this work we apply the
proposed approach to the investigation of the moiré patterns
resulting from the superimposition of two radial or two circular
gratings and their superpositions with each other or with LFGs
or DZPs when they possess branching points. The results of
these kinds of superpositions are quite interesting and new ap-
plications of the moiré technique may be sought in them.

It should be mentioned that in recent decades, the moiré
pattern resulting from the superposition of radial and circular
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gratings has been used to study different physical effects [4–7]
such as in-plane displacement measurements and the strain
distribution of soft materials [8], rigid-body displacement mea-
surements [9], and rotational and angular displacement inves-
tigations [10–12]. Furthermore, elongated circular gratings
have been used for the determinations of both the rigid-body
displacement and its direction [13,14]. Also, analytical expres-
sions of the moiré fringes formed by the evolute gratings have
been described [15]. Moreover, the circular and radial gratings
have also been employed in the visual perception, such as in the
illusory motion study and in the vision identification with op-
tical measuring systems [16–18]. In addition, several fantastic
illusory motions have also been produced by composition of
radially and azimuthally patterns and used in the human vision
perception studies [19,20]. On the other hand, in a wide range
of applications, the use of radial and circular gratings in the
usual interferometry, in Talbot interferometry, and in moiré
deflectometry for the measurement of different physical quan-
tities has been reported [21–23]. Examples of more recent ap-
plications are the two-step spatial phase-shifting radial shearing
interferometry [24] and the volume optical computerized
tomography [25,26]. As mentioned above, in this paper we
use the proposed reciprocal vectors approach for investigating
the moiré patterns of circular and radial gratings possessing
topological singularities. In order to present a complete set
of moiré patterns illustrating phase singularities of the circular
and radial gratings, we introduce new sets of circular and radial
gratings consisting of topological defects that we call defected
circular gratings (DCGs) and defected radial gratings (DRGs),
respectively. Here the topological singularities are also described
by the azimuthal component of the reciprocal vectors used in
the sinusoidal transmission functions of the gratings. It is worth
mentioning that a radial grating intrinsically possessing a sin-
gularity at the common center of its rulings extends radially
from that point. Hereafter, we refer to the DRG when a radial
grating consists of topological defect(s) out of its center. In this
work, we present a considerable number of different and inter-
esting moiré patterns of superimpositions of DCGs and DRGs
and their mutual superimpositions with each other or with
LFGs and DZPs. The formulation of these kinds of moiré pat-
terns is presented in detail by using the reciprocal vectors ap-
proach. Details of the calculation are presented and images
from simulations using MATLAB programming illustrate the
calculations.

Finally, it is worth mentioning that by the composition of
different patterns of the defected circular and radial gratings, we
have produced different patterns having illusory motions. It
seems that these kind of patterns will find a lot of new and
fantastic applications in human visual perception. It is known
that a significant illusion of motion can be observed in static
repeated asymmetric patterns [20]. The main reason for the
perception of this kind of illusory motions is related to the small
involuntary eye movements during fixation on the patterns.
The impact of fixation jitter on the observation or perception
of illusory motion for a given pattern differs from one person to
another person. We think that by the composition of different
repeated defected spiral gratings one can produce new patterns
having highly illusory motions and can use them for a more

reliable statistical analysis in the perception of illusory motions
of people. On the other hand, another reason proposed for the
explanation of illusory motion by fast and slow changes over
time is the neuronal representation of contrast and luminance
of the patterns [20]. In this regard, one can also produce more
appearance illusory motions by a collection of defected spiral
gratings having different color maps.

2. USE OF THE RECIPROCAL VECTOR
APPROACH IN THE MOIRÉ PATTERN
FORMULATION

In this section, a brief review of the reciprocal vector approach
in the moiré pattern formulation is presented. In this paper, for
simplicity, we consider superimposition of amplitude gratings
with sinusoidal transmission functions. One can find detailed
considerations of the general form of transmission functions of
the superimposed gratings in Section 2 of [1] and in [27,28].
The transmission function of a sinusoidal amplitude grating in
a general form is given by

t�ρ� � 1

2
f1� cos�ϕ�ρ��g; (1)

where ϕ is a scalar function that we call the phase function of
the grating, and ρ indicates the position vector on the grating’s
plane. The phase function changes by a value of 2π from a
given ruling to its adjacent ruling on the grating’s plane. We
introduce a general form for the reciprocal vector of a given
grating by G�ρ� � 2π

Λ�ρ� bG, where bG is a unit vector
perpendicular to the grating lines and Λ is the spatial period
of the grating at a given point having a position vector of ρ
from the center of the coordinate system. We have shown that
for a given amplitude grating with a sinusoidal transmission
function, its local spatial frequency in all coordinate systems
is given by

G�ρ� � �∇ϕ�ρ�; (2)

where the plus and minus signs correspond to the opposite di-
rections of the reciprocal vector of the grating at a given point.
Hereafter, for simplicity, we use the plus sign; when we need to
use the minus sign, we will state it explicitly. In the superim-
position of two gratings, the reciprocal vector of the resulting
moiré pattern is given in terms of the reciprocal vectors of the
superimposed gratings by [1]

Gmoire � �min�G1 �G2;G1 −G2�; (3)

whereG1 andG2 are the reciprocal vectors of the superimposed
gratings. It worth mentioning that both the magnitude and the
direction of the reciprocal vector of a grating pattern or a moiré
pattern are measurable using Eqs. (2) or (3), respectively.

3. BRIEF REVIEW OF LINEAR FORKED
GRATINGS AND DEFECTED ZONE PLATES

A detailed study on the moiré patterns of LFGs and DZPs is
presented in [1]. Since in this work we consider mutual super-
imposition of LFG/DZP and DCG/DRG, a brief review on the
presentation of LFGs and DZPs is presented here. The trans-
mission function of an LFG with a sinusoidal amplitude can be
written as [1,29]
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t�x; y� � 1

2

�
1� cos

�
2π

x
Λ
− lφ

��
; (4)

where φ denotes the azimuthal angle with respect to the z axis
and Λ is the grating’s period at a distance away from the dis-
location point placed at the center of the coordinate system.
The value of l is an integer number, denotes the dislocation
of the grating lines, and is called the topological defect number
or the defect number of the grating. We call the dislocation
point by branch point.

Using Eqs. (2) and (4) the reciprocal vector of a sinusoidal
amplitude LFG is given by

G � 2π

Λ
bx − l

ρ
bφ; (5)

wherebx is the unit vector of the x axis and bφ is the unit vector of
the azimuthal angle φ � tan−1�y∕x�. From the branch point or
center of the coordinate system, the radial coordinate is given
by ρ � �x2 � y2�1∕2. A more general form of LFGs can be
found in [1] when they are rotated and displaced in their planes
and their branch points are not located at the center of coor-
dinate system.

The transmission function of a DZP with a sinusoidal am-
plitude is given by [1]

t�ρ� � 1

2

�
1� cos

�
πρ2

s
− lφ 0

��
; (6)

where we named s as the ZP constant. φ 0 is the azimuthal angle
defined at the branch point, and we have

φ 0 � tan−1
�
y − y0
x − x0

�
; ρ � �x2 � y2�12; (7)

where �x0; y0� are the branch point’s coordinates in the ZP co-
ordinate system. When the branch point is at the center of a
ZP, it is called a spiral ZP (SZP).

For the positive value of the defect number, the branching
direction will be along the azimuthal unit vector. Using Eq. (2),
the grating’s reciprocal vector is given by

G � 2πρ

s
bρ − l

ρ 0 bφ 0; (8)

where bφ 0 is unit vector corresponding to the azimuthal
coordinate φ 0 defined from the branch point, and ρ 0 �
��x − x0�2 � �y − y0�2�1∕2.

Figure 1(a) shows a typical LFG pattern which has a defect
number of 4. In Fig. 1(b), a DZP pattern with a branch point
away from the center of the ZP is shown.

4. PRESENTATION OF CIRCULAR GRATINGS
CONSISTING OF TOPOLOGICAL DEFECTS

A circular grating (CG) is constructed with a set of concentric
rings, where their radial spacing is constant [Fig. 2(a)]. Similar
to the DZPs, now we introduce CGs having topological defects
and we call these kind of gratings DCGs. The transmission
function of a DCG with a sinusoidal amplitude can be written
as

t�x; y� � 1

2

�
1� cos

�
2π

ρ

Λ
− lφ 0

��
; (9)

where φ 0 is the azimuthal angle defined at the branch point, φ 0

and ρ are given by Eq. (7), and the coordinates of the branch
point are �x0; y0�. Here Λ is the radial period of the grating.
When the branch point is at the center of a CG, it is called
a spiral CG (SCG). Figure 2(b) shows a typical SCG pattern
with a defect number of 3. In Fig. 2(c), a DCG is shown which
has a branch point away from the center of the CG. For a pos-
itive value of the defect number, the branching direction will be
along the azimuthal unit vector. Using Eqs. (2) and (9), the
reciprocal vector of the grating is given by

G � 2π

Λ
bρ − l

ρ 0 bφ 0; (10)

where bφ 0 is the unit vector corresponding to the azimuthal
coordinate φ 0 defined by the branch point and ρ 0 �
��x − x0�2 � �y − y0�2�1∕2.

5. MOIRÉ PATTERNS OF TWO DEFECTED
CIRCULAR GRATINGS

In this section, we consider superposition of two DCGs with
radial periods of Λ1 and Λ2 and defect numbers of l 1 and l 2
placed at �x01 ; y01� and �x02 ; y02�, respectively. Using Eqs. (3)
and (10), the reciprocal vector of the resulting moiré pattern is
obtained as

Gmoire �
�
2π

Λ1

−
2π

Λ2

�bρ − � l 1
ρ1

bφ1 −
l 2
ρ2

bφ2

�
; (11)

Fig. 1. (a) A typical sinusoidal LFG pattern with a defect number of
l � �4. For a grating size of 2.5 × 2.5 cm2, the period is
Λ � 0.1 cm. (b) A typical DZP with a ZP constant of s �
0.1 cm2 and a defect number of l � 3 in which the branch point’s
coordinates are �x0; y0� � �0.6; 0.6� cm. The size of both of patterns
is 2.5 × 2.5 cm2.

Fig. 2. (a) A typical sinusoidal CG with period Λ � 0.1 cm, (b) a
typical SCG with the same constant and defect number l � 3, and
(c) a typical DCG with the same Λ and l , where the branch point’s
coordinates are �x0; y0� � �0.6; 0.6� cm. The size of all the gratings is
2.5 cm × 2.5 cm.
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where bφ1;2 are the unit vectors of the azimuthal coordinates
φ1;2 defined on their corresponding branch points, and the
radial coordinates ρ1;2 are measured from the corresponding
branch points �x01;2 ; y01;2�. In Eq. (11), for equal values of
the gratings’ periods, the first term vanishes and second term
shows two star-like-shaped patterns whose centers are located at
the defect points of the superimposed gratings. The number of
moiré fringes that come out from these points are equal to jl1j
and jl2j. Similar behaviors have been observed in the superim-
position of two LFGs having equal periods (see Fig. 2 of [1])
and in the superimposition of two DZPs having the same ZP
constants (see Fig. 7 of [1]). A detailed characterization of this
kind of moiré pattern was previously discussed regarding the
description of Eq. (15) in [1]. In Fig. 3, three typical moiré
patterns of superimposition of two DCGs having equal periods
are presented.

Now we consider the superimposition of two DCGs having
slightly different radial periods, in which their centers coincide.
In this case, according to Eq. (11), the resulting moiré pattern
is a magnified DCG with a radial period of Λmoire �
�Λ1Λ2�∕jΛ1 − Λ2j and its branch points are located at
�x01 ; y01� and �x02 ; y02� coordinates. When Λ1 > Λ2, the
branching direction corresponding to the first grating’s defect
point is same as sign of −l 1, and the direction of the second
branching obeys the sign of �l2. This behavior changes when
Λ2 > Λ1, as shown in Fig. 4.

A. Relative Displacements of the Superimposed
Gratings

Here we investigate the effect of relative displacements of the
superimposed DCGs on the resulting moiré patterns in a case
their periods are equal. Similar to DZPs in our previous work
[1], here, for a DCG having defect number of l and its center
moved to �δx2 ;

δy
2 �, we can rewrite its reciprocal vector presented

by Eq. (10) as

Gδx
2 ;

δy
2
� 2π

Λ
bρ1 − l

ρ 0
1

bφ 0
1; (12)

where the parameters ρ1 and ρ 0
1 and unit vectors bρ1 and bφ 0

1

defined as

ρ1 �
��

x −
δx
2

�
2

�
�
y −

δy
2

�
2
�1

2

;

ρ 0
1 �

��
x − x0 −

δx
2

�
2

�
�
y − y0 −

δy
2

�
2
�1

2

;

bρ1 � 1

ρ1
×
��

x −
δx
2

�bx � �
y −

δy
2

�by�;
and

bφ 0
1 � 1

ρ 0
1
×
�
−

�
y − y0 −

δy
2

�bx � �
x − x0 − δx

2

�by�:
In the superimposing of two DCGs in which their centers are
located at �	 δx

2 ;	
δy
2 � coordinates, the reciprocal vector of the

resulting moiré pattern is given by

Gmoire �
2π

Λ
�bρ1 − bρ2� −

�
l1
ρ 0
1

bφ 0
1 −

l2
ρ 0
2

bφ 0
2

�
: (13)

To illustrate some aspects of the resulting moiré patterns, by
considering δx, δy ≪ ρ, we expand the first parenthesis and get

bρ1 − bρ2 ≅ 1

ρ3
��y2δx − xyδy�bx � �x2δy − xyδx�by�:

As a result, the period of the moiré pattern will be Λmoire �
Λρ2∕�yδx − xδy�. In a special case, where we assume δy � 0,
the reciprocal vector of the resulting moiré pattern is

Gmoire ≅ −
2πyδx
ρ2Λ

bφ −

�
l 1
ρ 0
1

bφ 0
1 −

l 2
ρ 0
2

bφ 0
2

�
: (14)

In the absence of l 1 and l2, it indicates a set of radial moiré
fringes with a period of Λmoire � Λρ2∕yδx in the azimuthal
direction. The number of generated moiré fringes can be de-
termined by a path integral of Gmoire over a simple path sur-
rounding the centers. Here, because Gmoire is an odd function,
this integral should be calculated in an interval of �0; π� radians
and its value multiplied by 2. As a result, we have
N � 4jδxj∕Λ. Here the integral in a closed path will be equal
to zero. This is due to the nature of these moiré lines which do
not originate from the phase singularity (see [1]). Depending
on the value and sign of the y-component of the position vector,
in the superimposition of gratings having defect numbers, dif-
ferent shapes appear around the branch points. If y > 0, radi-
ally fork-shaped patterns appear and their directions follow the
sign of −l 1 and �l2, respectively. For y < 0, the directions will
be changed. The branching direction in branch points in radial
shapes will be discussed in Section 8. In a special case, when

Fig. 3. Moiré patterns of the superimposition of two DCGs having
equal radial periods of Λ � 0.01 cm. In (a) the branch points of the
superimposed gratings coincide at (0.6, 0.6) cm and the defect num-
bers are l 1 � 3 and l2 � −5, respectively. In (b) the branch points are
separated with coordinates of ��0.6;�0.6� cm, respectively, and in
(c) the defect numbers are changed to l 1 � 3 and l2 � 5.

Fig. 4. Moiré patterns of the superimposition of two DCGs having
slightly different radial periods and defect numbers of l 1 � 2 and
l 2 � 3. (a) Λ1 � 0.0041 cm and Λ2 � 0.004 cm and the branch
points are located at a common point (0.6, 0.6) cm. (b) The branch
points are separated with coordinates of ��0.6;�0.6� cm. (c) The
periods of the gratings changed to Λ1 � 0.004 cm and Λ2 �
0.0041 cm, respectively.
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y � 0, the first expression in Eq. (14) vanishes and star-like
patterns with topological defects of jl 1j and jl 2j will appear
on the corresponding coordinates. In Fig. 5, three typical
moiré patterns of superimposition of two DCGs having equal
periods are shown in which there are different separations be-
tween their centers.

6. MOIRÉ PATTERNS OF A DCG AND AN LFG

Here we investigate superimposition of a DCG and an LFG.
We know that the direction of the reciprocal vector of an LFG
is almost constant over the grating’s plane, except around the
defect point(s). On the other hand, the direction of the recip-
rocal vector of a DCG is almost in the radial direction. This
means that for different values of the azimuthal angle, the angle
between the reciprocal vectors of the superimposed gratings is
changed. In this case, moiré patterns will appear only around
two distinguishable zones in which the directions of the gra-
tings’ reciprocal vectors are almost parallel or anti-parallel to
each other. The reciprocal vectors of a DCG and an LFG
are given by Eqs. (10) and (5), respectively, and they consist
of the defect numbers equal to l 1 and l2 with locations of
�x01 ; y01� and �x02 ; y02�, respectively. The spatial periods of
the gratings are equal, and the centers of the gratings coincide
at the origin of the coordinate system. In this case, the recip-
rocal vectors of the resulting moiré patterns at the above-
mentioned zones are given by

Gmoire �
2π

Λ
�bρ1 � bx� − � l 1

ρ 0
1

bφ 0
1 �

l 2
ρ2

bφ2

�
; (15)

where the plus and minus signs correspond to the additive and
subtractive terms, respectively, of the reciprocal vectors of the
superimposed gratings in Eq. (3). Coordinates ρ 0

1 and ρ2 and
unit vectors bφ 0

1 and bφ2 are defined from the defect points of
DCG and LFG, respectively. Unit vector bρ1 is defined from
the center of DCG which coincides with the other grating’s
center. In other word, each of the plus and minus signs in
the above equation corresponds to a distinguished moiré pat-
tern appearing at two distinct zones over the superimposition
area of the gratings. This is a very interesting case in which both
addition and subtraction of the reciprocal vectors of the gra-
tings contributed to the resulting moiré pattern.

Now let us consider places on the superimposed pattern
where the azimuthal angle defined from the common center
is almost zero. In other words, φ1 � θ in which jθj ≪ 1. In
this case, the minus signs in Eq. (15) should be used and
we have bρ1 � cos θbx � sin θby. By this consideration, the first
set of parentheses in Eq. (15) changes to �sin θby�. As a result,
for θ > 0, if defect points of one or both of the gratings are
located in this area (φ1 ≅ 0), the resulting moiré pattern will
have an LFG-shaped pattern having a spatial period of Λ

j sin θj
and its topological defect will be equal to �l 1 or −l2 if the de-
fect point of the DCG or LFG is located at the same point in
the area. When both of the defect points take on this area, we
will have bφ 0

1 � bφ2 and ρ 0
1 � ρ2, and the generating LFG pat-

tern will have a topological defect of equal to �l1 − l 2�. For a
case in which θ < 0, the signs of the topological defects will be
changed. This means that the direction of the branching in the
resulting shapes will be changed.

Now we consider an area in which φ1 � π � θ, where
jθj ≪ 1. In this case, the plus signs in Eq. (15) should be used,
and we will have bρ1 � − cos θbx − sin θby. The first set of paren-
theses in Eq. (15) will be equal to �− sin θby�. For θ > 0, the
appearing LFG-shaped pattern in the resulting moiré pattern
will have a topological defect equal to �l1 or �l2 if the first
or second grating defect point places in this area, respectively.
Here its period is also equal to Λ

j sin θj . In addition, if both of the
defect points coincide at the same point in this area, the result-
ing topological defect will be equal to �l 1 � l 2�. Obviously, for
θ < 0, the signs of the topological defects will be changed.

If φ1 � 0 or φ1 � π, we will have only star-like-shaped pat-
terns if one or both of the defect points are located in this area.
When φ1 � 0 and the defect points coincide with each other in
this area, the number of moiré fringes originated from this
point will be equal to jl 1 − l 2j, but if φ1 � π, the result changes
to jl 1 � l 2j. Some typical moiré patterns of superimposition of
a DCG on an LFG in different cases are shown in Fig. 6.

7. MOIRÉ PATTERNS OF A DCG AND A DZP

In this section, we consider superimposition of a DCG on a
DZP having topological defects of l1 and l2, respectively.
An interesting moiré pattern appears when their centers
coincide. In this case, by substituting Eqs. (8) and (10) in
Eq. (3), the reciprocal vector of the resulting moiré pattern
is given by

Gmoire �
�
2πρ

s
−
2π

Λ

�bρ − � l 2
ρ2

bφ2 −
l 1
ρ1

bφ1

�
; (16)

where ρ1;2 and bφ1;2 are radial coordinates and azimuthal unit
vectors defined from the branch points of the DCG and DZP,
respectively. In the absence of each of the branch points, the
area in which the condition of ρ ≈ s∕Λ is satisfied, the first
set of parentheses will be approximately equal to zero and a
radially parallel kind of moiré fringes will appear. As the radial
period of the CG is constant over the grating and period of the
ZP is decreasing by increasing ρ, their radial periods to be equal
on a ring having radius of ρ0 � s∕Λ and the difference of their
periods to be very small at the vicinity of the ring. The radial
period of the resulting moiré fringes decreases by getting dis-
tance from the central moiré ring. We call the widest moiré

Fig. 5. Moiré patterns of the superimposition of two DCGs having
equal periods of Λ � 0.01 cm and defect numbers of l 1 � 2 and
l 2 � 3, in which their centers separated by �δx; δy� � �0.1; 0� cm.
In (a) the branch points of the gratings are located at
�	0.6;�0.6� cm, respectively, in (b) the branch points are changed
to the coordinates �	0.6;�0.6� cm, respectively, and in (c) the co-
ordinates are changed to �	0.6; 0� cm, respectively.

420 Vol. 33, No. 3 / March 2016 / Journal of the Optical Society of America A Research Article



fringe the central moiré ring. Here the centers of the resulting
radial moiré fringe are same as the centers of the superimposed
gratings. The typical shape of the moiré ring is shown in
Fig. 7(a). The thickness of the moiré ring can be defined using
the fact that changing the phase of the resulting moiré pattern
from the center of the moiré ring to the inner or outer limits of
the ring should be equal to π on the boundary of the moiré
ring. As the reciprocal vectors of the resulting moiré pattern
in the inner and outer section of this ring have opposite direc-
tion, we consider these two parts, separately. For this reason, we
integrate the two sides of Eq. (2) for the reciprocal vector of the
moiré ring in Eq. (16), from the middle of the ring to the inner
or outer limits of the ring as

π �
Z

s∕Λ�Δρ∕2

s∕Λ
Gmoire:dρ: (17)

The result indicates that the thickness of the moiré ring is

Δρ � 2
ffiffi
s

p
: (18)

When one of the branch points is located in the mentioned
ring, a SZP pattern appears in the vicinity of the branch point.
Due to the changing value of ρ in the vicinity of the branch
points in the moiré ring, we define ρbρ � ρ 0

1;2 � ρ1;2bρ1;2, where
ρ 0
1;2 are position vectors of the defect points. Because
jρ 0

1;2j � s∕Λ, Eq. (16) changes to

Gmoire ≅
2πρ1;2

s
bρ1;2 −

�
l 2
ρ2

bφ2 −
l 1
ρ1

bφ1

�
: (19)

By comparison with Eq. (8), we can deduce that the resulting
moiré pattern contains two SZP patterns on two defect points

with topological defects equal to −l1 and�l2, respectively. This
result is observed only on the moiré ring and in the vicinity of
the defect points. These features are shown in Fig. 7(b).

For the case in which the branch point of the DCG and the
common center of the superimposed gratings coincide, a non-
magnified SCG pattern appears around this point with a defect
number of �l 1, as shown in Fig. 7(c). In a similar case for the
DZP, or for both of gratings simultaneously, a nonmagnified
SZP with a defect number equal l2 will appear around the same
point [see Figs. 7(d)–7(f )]. These behaviors can be explained as
follows. In these cases, the SZP and SCG patterns are not moiré
patterns, because these patterns are observed even in the ab-
sence of the other grating. However, if branch points of both
of gratings lie simultaneously in the common center, because
the period of the SZP is larger than the period of the SCG in
this area, the dominant pattern will be the SZP pattern shape.

Now let us again to come back to the moiré ring. When one
or both of the branch points are taken on the gratings’ centers,
the transmission function of the moiré pattern in the middle of
the moiré ring (at a constant radial coordinate of ρ0 � s∕Λ )
becomes a periodic function of azimuthal coordinate. In other
words, a set of secondary moiré fringes appears on the central
moiré ring. In this case, from Eq. (16), in the middle of the
moiré ring the first set parentheses is equal to zero and we havebφ1 � bφ2 � bφ and ρ1 � ρ2 � ρ. Similar to Eq. (11), for
Λ1 � Λ2, the number of secondary moiré fringes is obtained
from jl 2 − l1j in the azimuthal direction. By exceeding the
value of ρ from ρ0 to �ρ0 � Δρ∕2�, the first set of parentheses
in Eq. (16) changes from zero to positive values. As a result, a
spiral-shaped pattern is produced in which the direction of its
ruling rotation follows the sign of �l 2 − l 1�. In the radius be-
tween �ρ0 − Δρ∕2� and ρ0, this behavior will be changed. As

Fig. 7. Moiré patterns of the superimposition of a DCG having
Λ � 0.01 cm and a DZP having s � 0.01 cm2 in the case where their
centers coincide. (a) The defect numbers of two gratings are zero.
(b) The defect numbers and coordinates of DCG and DZP are l 1 �
2 and l 2 � 5 and �x01 ; y01� � �1; 0� cm and �x02 ; y02� � �−1; 0� cm,
respectively. (c) l 1 � 2 and l 2 � 0 and �x01 ; y01� � �0; 0� cm.
(d) l 1 � 0 and l2 � 5 and �x02 ; y02� � �0; 0� cm. (e) Both defect
points’ coordinates are at the common center and l 1 � 2 and
l2 � 5. (f ) Similar to (e), but defect numbers are switched (l1 � 5
and l 2 � 2).

Fig. 6. Moiré patterns of the superimposition of a DCG on an LFG
having equal periods of Λ � 0.01 cm in the case where their centers
coincide. The defect numbers of the DCG and LFG in all cases except
in (a) are l 1 � 2 and l2 � 3, respectively, and the size of the gratings is
7.5 × 1 cm2. (a) The defect numbers of two gratings are zero. (b) The
defect coordinates of the DCG and LFG are �x01 ; y01� � �2; 0.3� cm
and �x02 ; y02� � �−2; −0.3� cm, respectively (θ > 0 for φ1 ≅ 0 or π).
(c) �x01 ; y01 � � �2; −0.3� cm and �x02 ; y02� � �−2; 0.3� cm, (θ < 0
for ϕ1 ≅ 0 or π). (d) �x01 ; y01� � �2; 0� cm and �x02 ; y02� ��−2; 0� cm. (e) Both of the defect points coincide at (2, 0) cm.
(f ) Both of the defect points coincide at �−2; 0� cm.
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another result, we can deduce a set of shapes similar to arrows
appearing on the moiré ring, with the numbers of jl 2 − l1j. The
directions of all of these arrows are in bφ0 when �l1 − l2� is pos-
itive and for the negative value of �l 1 − l2� this direction
changes to the −bφ0 direction [Figs. 7(c)–7(f )].

8. PRESENTATION OF RADIAL GRATINGS
CONSISTING OF TOPOLOGICAL DEFECTS

A radial grating (RG) is constructed with a set of rulings ex-
tended radially from a common center in which the azimuthal
angles between the adjacent rulings are equal. As shown in
Fig. 8(a), a RG intrinsically consists of a singularity at the center
where its rulings extend radially from that point. Like other
defected gratings, here we introduce a new set of RGs having
additional topological defect(s) located out of their centers, and
we call these kind of gratings defected RGs. Hereafter, we call
the location of the additional topological defect(s) of a DRG as
the defect point(s) of the grating. The transmission function of
a DRG with a sinusoidal amplitude can be written as

t�x; y� � 1

2
�1� cos�pφ − lφ 0��; (20)

where p is the total number of the radial rulings of the grating,
and φ 0 is the azimuthal angle defined at the defect point with
coordinates of �x0; y0�. In Figs. 8(b) and 8(c), two typical
DRGs having opposite signs of the defect numbers are illus-
trated. In this case, for the defect point located at the center
of the grating, i.e., φ 0 � φ, the number of rulings comes
out from the center of the grating will be equal to jp − l j.
The reciprocal vector of the grating using Eq. (2) is given by

G � p
ρ
bφ −

l
ρ 0 bφ 0; (21)

where ρ 0 and φ 0 are the radial coordinate and the azimuthal
unit vector defined from the defect point, respectively.

9. MOIRÉ PATTERNS OF TWO DEFECTED
RADIAL GRATINGS

Now let us investigate several cases of superimposition of two
DRGs. For the first case, we assume that the centers of the
superimposed DRGs coincide and the corresponding defect
points are located at �x01 ; y01� and �x02 ; y02�, respectively.
Also, we assume that the defect numbers and the total number
of rulings of the DRGs are not identical, i.e., l1 ≠ l 2 and

p1 ≠ p2. In this case, using Eqs. (2) and (21), the reciprocal
vector of the resulting moiré pattern is obtained as

Gmoire �
�
p1 − p2

ρ

�bφ −

�
l1
ρ1

bφ1 −
l2
ρ2

bφ2

�
: (22)

This equation indicates that three star-like-shaped patterns are
formed around the common center of the DRGs and around
each of the gratings’ defect points with defect numbers of
�p2 − p1�,�l1, and −l 2, respectively. In other words, the result-
ing moiré pattern consists of up to three magnified radial fringe
patterns: a central branching point located at the center of the
gratings and two other branching points at the defect points of
the superimposed gratings. In Fig. 9, three different moiré pat-
terns of the superimposition of two DRGs having different rul-
ing numbers and different defect numbers are shown. For the
second case, we consider superimposition of two DRGs having
equal ruling numbers (p1 � p2 � p) and different defect num-
bers (l1 ≠ l 2), in which their central branching points are sep-
arated and located at �	 δx

2 ;	
δy
2 �, respectively. In this case, the

reciprocal vectors of the superimposed gratings are obtained as

G	δx
2 ;	

δy
2
� p

ρ1;2
bφ1;2 −

l 1;2
ρ 0
1;2

bφ 0
1;2; (23)

where all coordinates and unit vectors are the same as in
Eq. (12) by considering the signs of δx

2 and δy
2 . The reciprocal

vector of the resulting moiré pattern using Eqs. (2) and (23) is
given by

Gmoire � p
�bφ1

ρ1
−
bφ2

ρ2

�
−

�
l 1
ρ 0
1

bφ 0
1 −

l 2
ρ 0
2

bφ 0
2

�
: (24)

Now we show some aspects of the resulting moiré patterns. Let
us expand the first set of parentheses in the case of jδxj,
jδyj ≪ ρ:

Gmoire �
p
ρ2

�−δybx � δxby − 2�δx cos φ� δy sin φ�bφ�
−

�
l1
ρ 0
1

bφ 0
1 −

l2
ρ 0
2

bφ 0
2

�
: (25)

In the superimposition of two nondefected radial gratings when
their centers are apart, moiré fringes are observed as something
like electric field lines of two charges having opposite signs lo-
cated at the centers of the gratings, as shown in Fig. 10(a). In
this case, the reciprocal vector of the resulting moiré pattern
along the perpendicular bisector of the line connecting the cen-
ters of the gratings, is given by

Fig. 8. (a) A typical sinusoidal amplitude RG having a total number
of rulings of p � 30. (b) A typical DRG with a defect number of l � 5
in which the defect point is located at �x0; y0� � �0.6; 0.6� cm and in
(c) the defect number is changed to l � −5. The size of all of the gra-
tings is 2.5 cm × 2.5 cm.

Fig. 9. Moiré patterns of the superimposition of two DRGs with
different numbers of rulings. In (a) the defect numbers are zero
and the ruling numbers are p1 � 300 and p2 � 310, respectively.
In (b) l 1 � 3 and l2 � 5 and defect points are located at
��0.6;�0.6� cm, and in (c) the ruling numbers of the gratings
are changed to p1 � 310 and p2 � 300.
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Gmoire �
pδ
ρ2

�− sin θbx � cos θby�; (26)

where θ � tan−1�δy∕δx� and Δ � �δx2 � δy2�1∕2. This equa-
tion indicates that over the bisector line, the resulting moiré
fringes are parallel to the line connecting the centers of the gra-
tings. The spatial period of the moiré fringes along the bisector
changes as a function of distance from the origin of coordinate
system, defined at the midway of the centers of the gratings,
and is given by Λ � 2πρ2

pΔ . For δy � 0, we have Λ � 2πy2

pδx .
Now, for simplicity, let us assume that δy � 0 and focus on
the area in which φ � 0, π in Eq. (25). Therefore, the first
part of this equation will be equal to − pδx

x2 by, and if one or both
of the singular points is located in this area, we will have one or
two fork-shaped patterns around the singular points, in which
their defect values and signs follow −l 1 and �l2, respectively, if
δx > 0, and for δx < 0 the signs will be changed. If the sin-
gular points lie in other areas, by considering δy � 0, Eq. (25)
changes to

Gmoire � −
pδx
ρ2

bγ − � l1
ρ 0
1

bφ 0
1 −

l2
ρ 0
2

bφ 0
2

�
; (27)

where bγ is a unit vector that corresponds to angle γ � 2φ. This
equation indicates that for δx > 0 in some places in which the
singular point is located, the appearing branching pattern will
have defect values and signs of −l 1 and�l2, respectively. In the
investigation of the transmission function of the resulting moiré
pattern, a term depending on the 2φ parameter appears in
which there is no such dependence in the transmission func-
tions of the superimposed gratings. A detailed analysis of the
relation between the value and the sign of the topological
charges of the superimposed gratings and the structures of
the resulting moiré fringes in which in their phase arguments
appear with an additional term with a dependence on 2φ is
also an interesting subject. Further investigation of this issue
is beyond the scope of the present work. Three typical
moiré patterns of the superimposition of two DRGs are shown
in Fig. 10.

10. MOIRÉ PATTERN OF A DRG AND AN LFG

In the superimposition of a DRG and an LFG, similar to the
case of superimposition of a DCG and an LFG, the direction of

the reciprocal vector of the DRG changes by the azimuthal
angle, while the direction of same vector of the LFG remains
almost unchanged. Therefore, we expect that a moiré pattern
appears only in distinct zones over the superimposition area in
which the resulting reciprocal vector from the addition and
subtraction of the reciprocal vectors of the superimposed gra-
tings are smaller than the gratings’ reciprocal vectors. In this
case, similar to Section 6, there are two separated zones on
the superimposition area: in one zone, the additive kind of
moiré pattern is produced, and in the other zone, the subtrac-
tive kind of moiré pattern is generated. These moiré patterns
correspond to the sum and difference of the reciprocal vectors
in Eq. (3). From Eqs. (5) and (21) for the reciprocal vectors of
the LFG and DRG, respectively, and considering both the sum
and the difference of the reciprocal vectors of the gratings in the
generating moiré patterns as shown in Eq. (3), we have

Gmoire �
�
p
ρ1

bφ1 �
2π

Λ
bx� −

�
l 1
ρ 0
1

bφ 0
1 �

l 2
ρ2

bφ2

�
: (28)

Coordinates ρ 0
1 and ρ2 and unit vectors bφ 0

1 and bφ2 are defined
from the defect points of the DRG and LFG, respectively. Unit
vector bφ1 is defined from the center of the DRG, which is
coincident with the other grating’s center.

Now we consider two different zones in the superimposition
area: the zones in the vicinity of φ1 ≅ π∕2 and φ1 ≅ −π∕2,
respectively. It is worth mentioning that this kind of superim-
position around the above-mentioned zones is the same as the
superimposition of a linear grating with another linear grating
in which the grid’s direction of the second one slowly
varies from place to place as formulated by an approximated
approach in [2]. In the first zone, bφ1 � − cos θbx − sin θby
and φ1 � π∕2� θ, where jθj ≪ 1. In the second area, around
φ1 ≅ −π∕2, we have bφ1 � cos θbx � sin θby and φ1 � −π∕2�
θ, where jθj ≪ 1. These assumptions leads to considering the
plus sign in Eq. (28) for the first zone and the minus sign for
the other one. In the two mentioned zones, around ρ1 ≅

pΛ
2π , we

can rewrite Eq. (28) as

Gmoire ≅ 	 2π sin θ

Λ
by − � l 1

ρ 0
1

bφ 0
1 �

l 2
ρ2

bφ2

�
: (29)

If one or both of the defect points of the gratings located in the
mentioned zones, in which the azimuthal angle is close to
�π∕2 and ρ1 ≅

pΛ
2π , this equation indicates an LFG-shaped

pattern with a period of Λ
sin θ . The defect numbers and branch-

ing directions should be discussed separately for each of the
above-mentioned zones. For φ1 ≅ π∕2 and the positive value
of θ, if the defect point of the DRG or LFG lies in one of the
zones, the appearing LFG-shaped patterns have −l1 and �l 2
defect numbers, respectively. The negative value of θ changes
this result. Obviously, if the two defect points coincide
(bφ 0

1 � bφ2 and ρ 0
1 � ρ2), the defect number of the resulting

LFG-shaped pattern will be	�l 1 � l2� for positive or negative
values of θ, respectively. For φ1 ≅ −π∕2, the results are slightly
different. The defect numbers of the resulting LFG-shaped pat-
tern will have �l1, −l 2, and �l 1 − l2� defect numbers for pos-
itive values of θ if the defect points of the DRG, LFG, or both
of them are located in the zones, respectively. Similar to the last

Fig. 10. Moiré patterns of the superimposition of two DRGs, in
this case, their centers are separated. Both of the gratings having ruling
numbers of p � 300. (a) l 1 � l 2 � 0 and the centers of the gratings
are located at �	0.025;	0.025� cm. (b) l 1 � 3 and l2 � 5 and the
defect points are located at �0;�0.6� cm and the displacement is in
the x direction by �	0.025; 0� cm. (c) l1 � 3 and l2 � −5 and the
defect points are located at ��0.6; 0� cm.
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case, a change in the sign of θ causes a change in the result of
the sign.

Now we consider a case in which θ � 0. In this case, the
resulting LFG-shaped patterns change to star-like shapes near
the defect points in which they are located in the zone of φ1 �
�π∕2 and ρ1 � pΛ

2π . The resulting patterns will have jl 1j, jl2j,
or jl1 � l 2j moiré fringes if the defect point of the DRG, LFG,
or both of them is located in the zones, respectively. In Fig. 11,
different cases of moiré patterns of a DRG and an LFG
are shown.

11. CONCLUSION

In this work, by the reciprocal vectors approach, formulation of
moiré patterns in the superimposing of two radial or two cir-
cular gratings possessing topological defects and their mutual
superimpositions with each other or with linear forked gratings
or defected zone plates are presented. For different cases, moiré
pattern formulations are investigated and corresponding simu-
lations are presented by MATLAB programming. In addition, a
detailed discussion based on the presented theoretical tools for
different cases is offered. Similar to the case of linear forked
gratings, the presented formulation has potential applications
in singular optics measurements. By the superposition of opti-
cal fields with the vortices, interference fringes similar to the
moiré patterns presented in this work can be obtained [30].
In addition, it seems that these kinds of moiré patterns in
an arrangement of gratings in which they are separated, such
as in the projection moiré technique like in environmental
analyses or in the moiré deflectometry and in the Talbot inter-
ferometry, may have a lot of potential applications. It worth

mentioning that the optical vortex beam characterizations, such
as reconstructing the wavefront and Poynting vector skew
angle, have already been done by moiré deflectometry of non-
defected linear gratings [31]. We think that the use of defected
gratings in moiré deflectometry will pick up its capability in the
optical vortex beam characterizations and singular optics mea-
surements. Also, consideration of the dynamic behavior of the
presented moiré patterns when the superimposed gratings are
moved with respect to each other is another interesting subject.
Besides, the presented approach in this paper and the one pro-
posed in [1] can be used in the reformulation and generaliza-
tion of the moiré fringes formed by superimposing linear
gratings with slowly varying parameters has already been pre-
sented in [2] by an approximated approach.

Finally, it worth mentioning that we have produced differ-
ent patterns having illusory motions by the composition of the
different patterns of the defected circular and radial gratings. As
for the resulting composition patterns, visual illusions can be
observed and the observed illusory motions can be changed
by changing the defected gratings’ parameters. We think that
these kinds of patterns will find many applications in the hu-
man visual perception.
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