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This work presents a very simple and comprehensive approach for classification of the combinational spatial
frequencies of the superimposed periodic or quasi-periodic structures. The reciprocal vectors of the structures
are used to express their respective spectral components, and a unique reciprocal vectors equation is introduced
for presenting the corresponding combinational frequencies. By the aid of the reciprocal vectors equation we
classify moiré patterns of combinational frequencies into four classes: the conventional moiré pattern, moiré
fringes of higher-order harmonics, higher-order moiré patterns, and pseudo-moiré patterns. The difference be-
tween the moiré fringes of higher-order harmonics and higher-order moiré patterns is expressed in the formulas.
By some typical examples, conditions for simultaneous formation of moiré patterns of different harmonics of the
superimposed gratings are investigated. We show that in the superimposition of two gratings, where at least one
has a varying period and another has a non-sinusoidal profile, different moiré patterns are formed over different
parts of the superimposed area, where a distinct pair of spatial frequencies of the superimposed structures con-
tributes to the formation of each of the patterns. We use the same procedure in the analysis of simultaneously
produced defected moiré patterns in the superimposition of a linear grating and a zone plate, where one or both
consist of some topological defects at specific locations and at least one of the gratings has a non-sinusoidal profile.
The topological defects of resulting moiré fringes are similar to those appearing in the interference patterns of
optical vortices. It is shown that the defect number of resulting moiré fringes depends on the defect numbers and
order of frequency harmonics of the gratings. The dependency of the defect number of the moiré fringes and its
sign to the defect numbers of the gratings and their contributed frequency harmonics is derived for both additive
and subtractive terms of moiré fringes, and the results are verified with several examples based on computational
simulations. © 2018 Optical Society of America

https://doi.org/10.1364/AO.57.009777

1. INTRODUCTION

Periodic structures known as gratings, rulings, or grids have
many applications in different branches of optics. Vasco
Ronchi is the pioneer in manufacturing and use of gratings
or rulings [1]. Gratings or rulings with spatial periods in a range
of micrometers to centimeters have found various applications
in optics ranging from the spectroscopy to the amateur tele-
scope making. Another application of the gratings is in the
moiré technique. In general, when two periodic or semi-
periodic structures are superimposed, a new periodic structure
with a larger spatial period appears that is well known as the
moiré pattern. During the past four decades, the moiré tech-
nique in different arrangements has been well established as a
simple and powerful means for different measurements in phys-
ics and engineering. In parallel to the advent of various appli-
cations for the moiré technique, its formulation has also been

developed and different methods have been proposed for inves-
tigating moiré patterns [2–9].

In most applications, moiré fringes form with the contribu-
tion of first-order or fundamental frequencies of the superim-
posed structures. In this case, the values of periods of the
superimposed structures are close. Moiré fringes of higher-order
frequencies are produced when higher harmonics of the super-
imposed structures make appreciable contributions in the re-
sulting pattern. The use of moiré fringes of higher-order
frequencies exhibits enhanced sensitivity [10]. For instance,
moiré fringes of higher-order frequencies were recently used
in a nano-moiré atomic force microscope (AFM) for increasing
the sensitivity of the in-plane displacements. Its work is
based on the spatial beating effect between the mth harmonic
of a non-sinusoidal profile quasi-periodic specimen and the
first harmonic of a reference grating [11]. In both cases,
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resulting low-frequency fringes are known as the first-order
moiré pattern. On the other hand, in the superimposition
of two gratings, higher-order moiré patterns can be obtained
by filtering the first-order moiré fringes from the resulting
superimposed pattern. The higher-order moiré fringes are con-
tributed on the profile of the resulting moiré pattern in which
by removing all the higher-order moiré fringes the profile of the
first-order moiré fringes will be a sinusoidal form.

Let us explain the difference between “higher-order moiré
fringes” and “moiré fringes of higher-order frequencies” by
an example. Consider a moiré pattern of two gratings with
the same periods and having non-sinusoidal profiles. In this
case a first-order moiré pattern forms by contribution of
fundamental frequencies of the superimposed gratings and a
higher-order moiré pattern is formed by the contribution of
a pair of higher-order frequencies of the gratings having equal
values. In practice, the intensity of the higher-order moiré
fringes is insignificant, such that only the lowest-order moiré
fringes are readily observed. The spatial period of a higher-order
moiré pattern with an order of n is 1

n times of the period of the
first-order moiré pattern. By removing impulses of the lowest-
order moiré patterns in the frequency domain, one can improve
visibility of a higher-order moiré pattern.

In a former study with the aid of parametric equations, for-
mulation of moiré patterns of higher-order frequencies is pre-
sented [12]. In the parametric equations method, a moiré fringe
is only determined by its trace equation. Therefore, there is no
continuous information over the fringes pattern and conse-
quently this method suffers from the low spatial resolution.
In two recent works moiré patterns of higher orders are used
for different purposes [13,14].

We have recently introduced a simple method for the study
of moiré patterns of gratings having sinusoidal profiles by using
the reciprocal vectors approach [15,16]. This method can be
used for presenting a variety of periodic or quasi-periodic struc-
tures having topological defects and predicting behavior of their
moiré patterns [17,18]. A grating with a sinusoidal transmis-
sion profile has three spatial frequency components, consisting
of the dc or the zero order and plus and minus first orders.
Therefore, in the superimposition of two gratings with sinus-
oidal profiles, only first-order moiré patterns of fundamental
frequencies are detectable. In this work, we take into account
higher-order spatial frequency components of the superim-
posed gratings, when at least one of them has a varying period,
and investigate simultaneous formation of moiré patterns of
different harmonics of the gratings by the aid of the reciprocal
vectors equation. A grating having a binary profile with a given
value of opening number (sometimes called filling factor of the
grating) or a grating with a three-level transmission value are
typical examples of the gratings that have higher-order spatial
frequencies in their spatial spectra or equally in their Fourier
expansions [19]. For instance, a Ronchi ruling has a two-level
or binary transmission profile with an opening number of 1

2,
and it has only odd orders of spatial frequencies in the spec-
trum. As in the reciprocal vectors approach a continuous phase
function is assigned to each of the superimposed gratings and
also to the resulting moiré pattern, measured physical quantities
such as characteristics of the superimposed gratings can be

determined from the moiré pattern over the entire superim-
posed area.

In this work using the reciprocal vectors equation approach,
a comprehensive formulation for moiré fringes of higher-order
harmonics and higher-order moiré patterns is presented, and
the difference of moiré fringes of higher-order harmonics with
higher-order moiré patterns is expressed. By the aid of the pre-
sented formulation, moiré patterns of different higher-order
frequencies of a linear grating consisting of topological defects
with a Fresnel zone plate are investigated. We show that the
defect of the defected grating is magnified by the resulting
moiré fringes in which the defect number of the resulting
moiré fringes is equal to the product of defect number of the
defected grating and order number of the contributed frequen-
cies in the moiré pattern. Also, superimposition of the defected
linear grating and defected zone plate is investigated with more
details.

Furthermore, in this work we use the reciprocal vectors
equation approach for presenting pseudo-moiré, in which it ap-
pears as a modulation effect and having no corresponding im-
pulses in the Fourier spectral domain [20].

2. BASIC CONCEPTS OF THE RECIPROCAL
VECTOR EQUATION APPROACH

The transmission function of a grating can be written as

t�ρ� �
X∞
m�−∞

cm exp�imϕ�ρ��, (1)

where ϕ�ρ� is the phase function of the grating and ρ is the
position vector over the grating. cms are expansion coefficients
and define the grating type; for example, for a sinusoidal grating
only m � 0, � 1 exist. The spectrum of the spatial frequencies
shows all frequency components of the transmission function,
and can be written as

T �G� �
X∞
m�−∞

Cmδ�G − m∇ϕ�ρ��, (2)

where δ is the Dirac delta function and∇ϕ�ρ� � G�1��ρ� is the
local reciprocal vector of the grating and its value jG�1��ρ�j
shows the fundamental frequency of the grating at position ρ.
By considering Eq. (1) and using following equation [16]:

G�m��ρ� � −i
∇t�m��ρ�
t�m��ρ� , m ∈ Z, (3)

one can calculate the mth component of the spatial frequency
of the grating at the vicinity of the position ρ, where t�m��ρ� is
the mth term of Eq. (1). From Eqs. (1) and (3), the mth-order
component of the grating’s local frequency is obviously m times
of the fundamental local frequency of the grating:

G�m��ρ� � mG�1��ρ�, m ∈ Z: (4)

In the superimposition of two gratings having transmission
functions of t1�ρ� and t2�ρ�, the resulting transmission
function in the space and spatial frequency domains are,
respectively,

t res�ρ� �
X∞

m1,m2�−∞
cm1

cm2
exp�im1ϕ1�ρ�� exp�im2ϕ2�ρ��, (5)
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T res�G��
X∞

m1,m2�−∞
Cm1

Cm2
δ�G−m1G1�ρ�−m2G2�ρ��, (6)

where indices 1 and 2 refer to the first and second gratings and
for both of the equations m1,m2 ∈ Z. Transmitted light con-
taining a set of spatial frequencies is given by the following
equation:

G � m1G
�1�
1 � m2G

�1�
2 , m1,m2 ∈ Z, (7)

where G�1�
1 and G�1�

2 are the fundamental frequencies of the
gratings.

In Fig. 1(a) two similar binary (no Ronchi) gratings having a
small angle between their lines and a period Λ0 are illustrated. In
Fig. 1(d) two binary (no Ronchi) gratings with periods Λ1 �
2Λ0 and Λ2 � 3Λ0 again having the same small angle between
their lines are shown. Dependency ofG to the local period of the
grating is given by G�ρ� � 2π

Λ�ρ� Ĝ, in which Ĝ is a unit vector
perpendicular to the lines of the grating. In practice the angle
between the lines of the gratings is less than several degrees.

In Figs. 1(b) and 1(e) the fundamental frequencies of the
gratings, G�1�

1 and G�1�
2 , and their higher harmonics, G�2�

1 ,
G�3�

1 ,… and G�2�
2 ,G�3�

2 ,…, are shown by point impulses.

Figure 1(c) shows, from the left to right, the resulting
pattern of superimposition of the gratings shown in Fig. 1(a),
respective conventional moiré fringes, and second-order moiré
fringes. For the case of two gratings introduced in Fig. 1(d), the
resulting superimposed pattern, the corresponding first-order
moiré fringes and second-order moiré fringes are illustrated
in Fig. 1(f ) from the left to right, respectively. As can be
deduced, and also will be discussed below, here the first-order
moiré pattern, G�1�

moire 0 , forms by contribution of frequency

components of ��G�2�
1 , � G�3�

2 �, and the next lowest
frequency components of (G�4�

1 � 2G�2�
1 ,G�6�

2 � 2G�3�
2 )

are responsible to make the second-order moiré fringes,
G�2�

moire 0 . In fact, the second-order moiré pattern is almost hid-
den behind the original moiré pattern and after removing im-
pulses of the first-order moiré pattern its pattern appears
remarkably. Below, by details we determine the difference of
moiré patterns of higher-order harmonics and higher-order
moiré patterns.

It is worth noting that Figs. 1(b) and 1(e) show the respec-
tive spectra of the individual gratings and they do not show the
respective spectrum of the superimposition of the gratings.
Therefore, it differs with the moiré patterns’ spectra were

Fig. 1. (a) Two binary (no Ronchi) gratings with the same period Λ0 with a small angle between their lines. (b) Illustration of frequency com-
ponents of the gratings in the frequency domain (it does not illustrate the respective spectrum of the resulting moiré pattern). Two pairs of the
frequency componentsG�1�

1 andG�1�
2 make first-order moiré fringes (the conventional moiré fringes) and two other pairsG�2�

1 andG�2�
2 responsible to

make second-order moiré fringes. (c) From left to right, the resulting pattern of superimposition of the gratings, respective conventional moiré
fringes, and second-order moiré fringes. (d) Two typical binary (no Ronchi) gratings with periods Λ1 � 2Λ0 and Λ2 � 3Λ0 with a small angle
between their lines. (e) Illustration of frequency components of the gratings in the frequency domain. In this case, two pairs of the frequency
components G�2�

1 and G�3�
2 make first-order moiré fringes and two other pairs G�4�

1 and G�6�
2 are responsible to make second-order moiré fringes.

(f ) From left to right, the resulting superimposed pattern, respective first-order moiré fringes, and second-order moiré fringes. When the higher-order
frequencies contribute in the formation of moiré fringes, their contrast decreases.
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usually used in the spectral approach, such as in [9]. However,
each of the impulses of a given moiré pattern’s spectrum can be
produced by a suitable combination of the different harmonics
of the superimposed structures using Eq. (7).

In the next section using the reciprocal vectors equation
approach, we present a comprehensive classification of combi-
national frequencies of higher spectral components of two
superimposed periodic or quasi-periodic structures. This ap-
proach can be also applied on three or more gratings placed
together. We classify the combinational frequencies of the
superimposed structures into four classes: the conventional
moiré pattern, the moiré fringes of higher-order harmonics, the
higher-order moiré patterns, and pseudo-moiré patterns. It is
worth noting that some aspects of the proposed classification
in practice were used in minimization of the moiré effect in
the display devices [21,22].

3. MOIRÉ FRINGES OF HIGHER-ORDER
HARMONICS AND HIGHER-ORDER MOIRÉ
PATTERNS

Here we define moiré pattern, determine conditions of forma-
tion of a moiré pattern, and consider different moiré patterns of
superimposition of two periodic structures. Also, conventional
or first-order moiré patterns, including moiré fringes of funda-
mental and higher-order harmonics of the gratings and higher-
order moiré patterns, are defined by the aid of the reciprocal
vectors equation.

• The moiré pattern is determined by the minimum value
of G in Eq. (7) obtained with any combination of m1 and m2,
in which G is considerably smaller than both of the fundamen-
tal frequencies of the superimposed gratings.

• The first-order moiré pattern of first-order frequencies
is formed by contribution of fundamental frequencies of the
superimposed gratings. When the local pitch of the gratings
is almost equal the fundamental frequencies of the gratings con-
tribute in the formation of a moiré pattern. In this case, the
reciprocal vector of the resulted moiré pattern is given by

G�1��1,1�
moire 0 � �min��G�1�

1 � G�1�
2 �, �G�1�

1 − G�1�
2 ��, (8)

where, in the superscript of G�1��1,1�
moire 0 the number of first paren-

theses shows the order of moiré fringes and the second shows
orders of the contributed frequencies of the gratings in the re-
sulting moiré pattern, and the plus and minus terms refer to
additive and subtractive first-order moiré fringes, respectively.
We use the “min” function to show the minimum between vec-
tor norms. When direction of the reciprocal vector of one of the
gratings varies over the superimposed area, the contributed
term in the moiré fringes may alter between the sum and differ-
ence terms at distinct regions over the superimposed area.

As a grating with a sinusoidal transmission profile has only
the dc and �1 orders in its Fourier expansion, in the super-
imposition of two sinusoidal gratings only the first-order
moiré pattern can be formed.

In a case G�1�
1 ∥G�1�

2 , parallel moiré fringes form, and when
G�1�

1 � G�1�
2 , infinite-mode moiré fringes with a spatial

frequency of zero appear.

• A first-order moiré pattern with higher-order frequen-
cies is formed by contribution of at least one of the higher-or-
der frequencies of the superimposed gratings.

As a simple example, consider that the fundamental fre-
quency of the first grating is half of the second one, jG�1�

2 j �
2jG�1�

1 j, then the minimum value of Eq. (7) is given by m1 � 2

and m2 � 1, in which jmin��2G�1�
1 �G�1�

2 �, �2G�1�
1 −G�1�

2 ��j<
jmin��G�1�

1 �G�1�
2 �, �G�1�

1 −G�1�
2 ��j. Here, the reciprocal vector

of the resulting lowest-order moiré pattern is given by

G�1��2,1�
moire 0 � �min��2G�1�

1 � G�1�
2 �, �2G�1�

1 − G�1�
2 ��

� �min��G�2�
1 � G�1�

2 �, �G�2�
1 − G�1�

2 ��: (9)

As a more general case of first-order moiré fringes of higher-
order frequencies, consider that jm1G

�1�
1 j and jm2G

�1�
2 j are al-

most equal, where m1,m2 ∈ Z, and they are coprime. As the
minimum value of Eq. (7) determines the moiré pattern, there-
fore the reciprocal vector of the resulting lowest-order moiré
pattern is given by

G�1��m1,m2�
moire 0 � �min��m1G

�1�
1 � m2G

�1�
2 �, �m1G

�1�
1 − m2G

�1�
2 ��

� �min��G�m1�
1 � G�m2�

2 �, �G�m1�
1 − G�m2�

2 ��: (10)

Here, again, parallel moiré fringes form when G�1�
1 ∥G�1�

2 , and
infinite-mode moiré fringes appear if m1G

�1�
1 � m2G

�1�
2 .

Both former cases can be considered as the lowest-order
moiré pattern that can be easily observed over the superim-
posed area. Below we present the higher-order moiré pattern
in which these kinds of patterns are hidden behind the original
moiré pattern.

• The higher-order moiré pattern is formed by the
contribution of integer multiples of the gratings frequencies
contributed in an existence lowest-order moiré pattern.
Consider that in the formation of the lowest-order moiré pat-
tern, higher-order frequencies of �G�m1�

1 � m1G
�1�
1 ,G�m2�

2 �
m2G

�1�
2 � contribute. In this case, the nth-order moiré pattern

is given by

G�n��nm1, nm2�
moire 0

� �min��nm1G
�1�
1 � nm2G

�1�
2 �, �nm1G

�1�
1 − nm2G

�1�
2 ��

� �min��nG�m1�
1 � nG�m2�

2 �, �nG�m1�
1 − nG�m2�

2 ��, (11)

where

G�n��nm1, nm2�
moire 0 � nG�1��m1,m2�

moire 0 : (12)

In Fig. 1(e), a case of G�2��4,6�
moire 0 � 2G�1��2,3�

moire 0 is illustrated. As is
apparent, the spatial period is divided by n in an nth-order
moiré pattern but still moiré fringes have the same orientation
of the first-order moiré fringes.

• When grids of the superimposed grating are parallel and
G�1�

2 � m1G
�1�
1 , where m1 is an integer, as mentioned above an

infinite-mode moiré pattern with a spatial frequency of zero
forms. Meanwhile, the resulting pattern still has a fine perio-
dicity the same as the periodicity of the first grating, but the
transmission profile of the resulting pattern differs from both
profiles of the superimposed gratings (see Fig. 2). This behavior
appears for both sinusoidal and binary gratings.
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• When m1G
�1�
1 � m2G

�1�
2 in which m1 and m2 are co-

prime, the period of the higher-frequency resulting pattern
is equal to the least common multiple of the gratings’ periods.
As the period of the resulting pattern is several times of the
periods of the superimposed gratings, it appears as a modula-
tion effect and has no corresponding impulses in the Fourier
spectral domain [20]. This pattern is known as the pseudo-
moiré pattern. Similarly, for all cases of jGj ≈ �jG1j, jG2j�,
the resulting patterns can be called pseudo-moiré patterns.
Some relevant results of the pseudo-moiré can be found
in [20,23,24].

4. SEVERAL EXAMPLES

In the following, several useful examples are presented.

A. First- and Higher-Order Moiré Fringes of Two
Linear Binary Gratings of Λ1 � 2Λ2

Here, superimposition of two linear gratings having binary pro-
files with periods of Λ1 � 2Λ2 � 2Λ0 is considered in which
jG�1�

2 j � jG�2�
1 j � 2jG�1�

1 j, m1 � 2, and m2 � 1. It is also con-
sidered that lines of the gratings have an angle of θ. In this case,
fundamental frequencies of the gratings can be written as

G�1�
1 � 2π

2Λ0

�
cos

�
θ

2

�
x̂ � sin

�
θ

2

�
ŷ
�
,

G�1�
2 � 2π

Λ0

�
cos

�
θ

2

�
x̂ − sin

�
θ

2

�
ŷ
�
: (13)

The first-order moiré pattern is given by

G�1��2,1�
moire 0 � �min��G�2�

1 � G�1�
2 �, �G�2�

1 − G�1�
2 ��

� �min��2G�1�
1 � G�1�

2 �, �2G�1�
1 − G�1�

2 ��

� � 2π

Λ0

min

�
2 cos

�
θ

2

�
x̂, 2 sin

�
θ

2

�
ŷ
�
: (14)

The first term is minimum when θ ≅ π and the second term is
minimum for θ ≅ 0 in which they show additive and subtrac-
tive conditions, respectively. The corresponding period of the
resulting moiré pattern is Λmoire 0 � Λ0

2 cos�θ2�
or Λmoire 0 � Λ0

2 sin�θ2�
for the additive and subtractive cases, respectively, which is
equal to the period of the moiré pattern of two similar gratings
with the same periods of Λ0.

Higher-order moiré patterns are given by

G�n��2n,n�
moire 0 � �min��G�2n�

1 � G�n�
2 �, �G�2n�

1 − G�n�
2 ��

� �min��2nG�1�
1 � nG�1�

2 �, �2nG�1�
1 − nG�1�

2 ��

� � 2π

Λ0

min

�
2n cos

�
θ

2

�
x̂, 2n sin

�
θ

2

�
ŷ
�
, (15)

where it is n times of the fundamental frequency in Eq. (14).
It is worth noting that, in the parallel case where θ � 0 and

when Λ1 � mΛ2, m ∈ N, a pseudo-moiré pattern appears
(even the gratings have sinusoidal profiles); see Fig. 2 where
Λ1 � 5Λ2.

B. High-Order Moiré Patterns of Two Linear Gratings
Having Relative Fractional Periods
Now, we assume that 3Λ1 � 2Λ2 � 6Λ0. Therefore,
2jG�1�

1 j � 3jG�1�
2 j, m1 � 2, and m2 � 3. Similar to the

previous example, an angle θ between grids of gratings is con-
sidered. The gratings’ reciprocal vectors corresponding to their
fundamental frequencies are given by

G�1�
1 � 2π

2Λ0

�
cos

�
θ

2

�
x̂ � sin

�
θ

2

�
ŷ
�
,

G�1�
2 � 2π

3Λ0

�
cos

�
θ

2

�
x̂ − sin

�
θ

2

�
ŷ
�
, (16)

and the lowest-order resulting moiré pattern is

G�1��2,3�
moire 0 � �min��G�2�

1 � G�3�
2 �, �G�2�

1 − G�3�
2 ��

� �min��2G�1�
1 � 3G�1�

2 �, �2G�1�
1 − 3G�1�

2 ��

� � 2π

Λ0

min

�
2 cos

�
θ

2

�
x̂, 2 sin

�
θ

2

�
ŷ
�
: (17)

Here, similar to Eq. (14), θ ≅ π and θ ≅ 0 correspond to the
additive and subtractive cases, respectively. In addition, the
periods of the resulting moiré patterns are Λmoire 0 � Λ0

2 cos�θ2�
and Λmoire 0 � Λ0

2 sin�θ2�
for the additive and subtractive cases,

respectively. Here, Λ0 defines the period of the resulting
moiré pattern and is given by the greatest common divisor of
the gratings’ periods. In Fig. 3, the above case is illustrated
by the resulting patterns of superimposition of two gratings
having sinusoidal and binary profiles.

As shown before, higher-orders moiré fringes are given by

G�n��2n,3n�
moire 0 � �min��G�2n�

1 � G�3n�
2 �, �G�2n�

1 − G�3n�
2 ��

� �min��2nG�1�
1 � 3nG�1�

2 �, �2nG�1�
1 − 3nG�1�

2 ��

� � 2π

Λ0

min

�
2n cos

�
θ

2

�
x̂, 2n sin

�
θ

2

�
ŷ
�
, (18)

where again this frequency is n times of the fundamental
frequency in Eq. (17).

In the current case and when θ � 0, pseudo-moiré fringes
with a form of equidistant parallel fringes appear with a spacing

Fig. 2. Two linear binary gratings with the same opening numbers
equal to 0.3 and periods: (a) Λ1 � 5Λ0 and (b) Λ2 � Λ0.
(c) Resulting pseudo-moiré pattern with a period equal to Λ1.
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equal 6Λ0 (least common multiple of Λ1 and Λ2), as illustrated
in Fig. 4.

C. Simultaneous First-Order Moiré Patterns of
Different Harmonics of Two Linear Gratings
Here, we examine simultaneous formation of various first-order
moiré fringes of two linear gratings having sinusoidal and
binary profiles in parallel case. Lines of both of the gratings
are in the y direction and the period of one of the gratings
is constant, Λ1 � constant, and the period of another one is
gradually changed by the x coordinate [see Figs. 5(a)–5(d)].
We consider a reciprocal vector function for them2th harmonic
of the second grating in the following form:

G�m2�
2 � m2

�
2π

Λ2

� αx
�
x̂, (19)

where α is a constant that defines the variation rate of the fre-
quency along the x direction. When α > 0, it needs x ≥ − 2π

Λ2α
,

and for α < 0 the valid range is x ≤ − 2π
Λ2α

.
First, we consider superimposition of two linear gratings;

one has a constant period Λ1 and both have binary profiles.
The frequency of a given first-order moiré pattern produced
by the contributions of G�m1�

1 and G�m2�
2 can be written as

G�1��m1,m2�
moire 0 �x� � �

�
m2

�
2π

Λ2

� αx
�
− m1

2π

Λ1

�
x̂, (20)

where m1,m2 ∈ N and the subtractive term is only taken into
account. For known values of m1 and m2, the corresponding
phase function is given by

ϕ�m1,m2�
moire 0 �x� �

�
2πm2

Λ2

−
2πm1

Λ1

�
x � 1

2
m2αx2 � ϕ0: (21)

From Eq. (20) locations of different moiré fringes can be
obtained by

x�m1,m2� � 2π

α

�
m1

m2

1

Λ1

−
1

Λ2

�
, m1,m2 ∈ N: (22)

When m1 � m2 � 1 that means only fundamental frequencies
of the gratings are contributed in moiré fringes; at the vicinity
of position x0 � 2π

α � 1
Λ1

− 1
Λ2
� gratings’ periods are the same and

parallel first-order moiré fringes appear. When both gratings
have sinusoidal profiles, we have only first-order moiré fringes
of fundamental harmonics that appear at that position; see
Figs. 5(e) and 5(f ). For better illustration of the resulting
moiré fringes in Fig. 5(f ), higher frequency patterns containing
gratings structures are removed from the resulting superim-
posed moiré pattern using Fourier transform and spatial filter-
ing in the frequency domain. This procedure is done on all
following resulting moiré patterns.

Now, we consider moiré fringes of higher-order frequencies
using Eq. (22). When α > 0, over the area x > x0 the funda-
mental frequency of the second grating increases. Therefore, in
the formation of the first-order moiré pattern, the fundamental
frequency of the second grating with one of the higher-order
frequencies of the first grating is contributed. On the other
hand, over the left side area x < x0, as the period of the second
grating increases by decreasing x, the fundamental frequency of
the first grating and a higher-order frequency of the second gra-
ting contribute in the formation of the moiré pattern.

It is possible to get a negative value for α. With this
assumption the results change a bit. In summary, according
to Eq. (22) we have

x�m1,m2�1� � 2π

α

�
m1

Λ1

−
1

Λ2

�
,

x�m1�1,m2� � 2π

α

�
1

m2Λ1

−
1

Λ2

�
, (23)

where the first equation refers to the superimposition of a
binary grating with a constant period and a sinusoidal linear
grating with a gradually varying period, and the next equation

Fig. 3. (a) Superimposition of two binary gratings having periods of
Λ1 � 2Λ0 and Λ2 � 3Λ0 with Λ0 � 0.4 mm and a relative rotation
angle of 1° between their lines and having the same opening numbers
of 0.2; (b) superimposition of the same gratings with sinusoidal pro-
files; and (c) superimposition of two sinusoidal gratings with equal
period Λ0 and relative rotation angle 1°. Clearly in (b) the moiré pat-
tern does not appear, and in (c) the period of the moiré pattern is the
same as (a). The value of Λ0 � 0.4 mm is valid when sizes of all
patterns are 2.5 cm × 8 cm.

Fig. 4. Linear sinusoidal gratings with (a) Λ1 � 2Λ0 and
(b) Λ2 � 3Λ0. (c) Pseudo-moiré pattern of the gratings in the parallel
case.
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refers to a binary grating with a varying period and a sinusoidal
linear grating.

Other higher-order frequencies of both gratings can be
contributed in the formation of moiré patterns where positions
of the moiré patterns can be calculated using Eq. (22). In
Figs. 5(g)–5(i) several moiré patterns of high-order frequencies
are illustrated. As the non-sinusoidal gratings have extra
frequencies they naturally produce additional (as compared
with sinusoidal) patterns in those areas. In Fig. 5(e), the con-
ventional moiré pattern of the superimposition of two linear
gratings having sinusoidal profiles, one with a constant period
and another with a variable period, is shown. Figure 5(f ) shows
the same pattern of Fig. 5(e) after removing the superimposed
gratings’ high-frequency patterns. A fast Fourier transforming
process with the MATLAB software is used for removing the
high-frequency patterns (see also [25]) In Fig. 5(g), the moiré
patterns of the superimposition of a linear grating having a
binary profile and a constant period on a sinusoidal linear
grating having variable period are illustrated. Figure 5(h) shows
the first-order moiré patterns of different higher-order harmon-
ics of the superimposition of a linear grating having a sinusoidal
profile with a constant period on a linear grating with a binary
profile and variable period. Figure 5(i) shows the first-order
moiré patterns of different higher-order harmonics of the super-
imposition of two linear gratings having binary profiles in
which one has a constant period and another has a varying
period.

A similar case of Fig. 5(g) has been previously used for the
determination of the pixel size of a monitor [13].

D. Formation of Various First-Order Moiré Patterns
in the Superimposition of a Defected Linear Grating
and a Defected Fresnel Zone Plate
Here some interesting examples are considered where various
superimpositions of a linear grating and a Fresnel zone plate
with sinusoidal or binary profiles and consisting of topological
defects at different locations are presented. Already in [16] it is
shown that when a defected linear grating and a defected
Fresnel zone plate having sinusoidal profiles are superimposed,
a new zone palate shape appears as the moiré pattern in an area
where the linear grating and zone plate have almost equal spa-
tial periods, in which the center of the produced zone plate is
taken at that point the gratings have the same periods and their
lines are almost parallel. In addition, it is shown that when one
of the gratings has a topological defect at that point, the zone
plate shape changes to a spiral shape with a topological defect of
equal to the same topological defect number of the defected
grating. The sign of the defect of the produced pattern may
depend on the position of the defect point.

Now we show that when at least one of the superimposed
gratings has a binary profile, various first-order moiré patterns
simultaneously appear over the superimposed area. Also, it is
shown that a dislocated moiré pattern appears when a disloca-
tion is considered for one or both of the gratings over an area
where the gratings have almost equal frequency harmonics.

The phase function of a zone plate having a sinusoidal pro-
file and consisting of a defect point with a defect number equal
l 1 at position �x1, y1� is given by [16]

Fig. 5. (a) Linear grating with a sinusoidal profile with Λ1 � 0.2 cm. (b) Linear grating with a binary profile with the same period of (a) and
an opening number equal to 0.25. (c) Sinusoidal linear grating with a varying spatial frequency with Λ2 � 0.2 cm and α � 3.927 rad∕cm2.
(d) Binary grating with the same periodicity of (c) and an opening number equal to 0.25. (e) Superimposition of the two gratings introduced
in (a) and (c). (f ) Same pattern of (e) after removing high-frequency patterns. (g) Superimposition of the two gratings introduced in (b) and (c).
(h) Superimposition of the two gratings introduced in (a) and (d). (i) Superimposition of the two gratings introduced in (b) and (d). Higher
frequencies on moiré patterns were eliminated for more clarity in (f )–(i). All positions of the main moiré fringes are shown with the dashed vertical
lines where the resulting main fringes at x � 8 cm and x � 16 cm have m1 � 2 and m1 � 3, respectively, and at x � −4 cm and x � −5.3 cm
the contributing orders are m2 � 2 and m2 � 3, respectively. The position x � 0 relates to m1 � m2 � 1 in Eq. (23). The values of the above-
mentioned length-related parameters are valid when lengths of all shapes are 24 cm.
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ϕ�1�
ZP � πρ2

s
− l1φ1 � ϕ0, (24)

where s is known as the zone plate constant and φ1 shows the
azimuthal angle defined as φ1 � arctan�y−y1x−x1

�. Here, again, we
present m1th order of the reciprocal vector function as

G�m1�
ZP � m1

�
2πρ

s
ρ̂ −

l1
ρ1

φ̂1

�
, (25)

where ρ̂ is the unit vector corresponding to the radial coordi-
nate in the polar system and φ̂1 is the unit vector corresponding
to the azimuthal angle φ1 and ρ1 is the radial coordinate origi-
nated from the �x1, y1� point.

The phase function for the fundamental frequency of a de-
fected linear grating with a spatial period and defect number of
Λ and l 2 having a sinusoidal profile can be defined as

ϕ�1�
DLG � 2π

Λ
x − l 2φ� ϕ0: (26)

The grating’s defect point is taken at the center of the
coordinates system. The m2th order of the reciprocal vector
function is

G�m2�
DLG � m2

�
2π

Λ
x̂ −

l 2
ρ
φ̂

�
, (27)

where x̂ and φ̂ are unit vectors corresponding to the x-axis and
azimuthal angle, respectively, and ρ is the radial coordinate in
the polar system. In Eqs. (26) and (27), both notations of the
Cartesian and polar coordinate systems are simultaneously
used, for simplicity.

It should be remembered that high-order reciprocal vectors
do not exist for the sinusoidal gratings, but for other types of
the gratings, for example those having binary profiles, accord-
ing to Eq. (4), high-order spatial frequencies can be calculated.

In the superimposition of a defected linear grating and a
defected zone plate, the reciprocal vector of the resulting
moiré pattern using Eqs. (25) and (27) is given by

G�1��m1,m2�
moire 0

� �min

�
m1

�
2πρ

s
ρ̂ −

l1
ρ1

φ̂1

�
�m2

�
2π

Λ
x̂ −

l2
ρ2

φ̂2

��

��min

��
m1

2πρ

s
ρ̂�m2

2π

Λ
x̂
�
−

�
m1l 1
ρ1

φ̂1 �
m2l2
ρ2

φ̂2

��
,

(28)

where φ̂1,2 and ρ1,2 are defined in the coordinates system with
the center located at �x1,2, y1,2�. When ρ̂ and x̂ are almost par-
allel, with the minus sign the subtractive term moiré pattern
appears and when they are almost antiparallel, with the plus
sign the additive term moiré pattern appears. The additive
and subtractive moiré patterns appear at the vicinity of
x � 	 m2s

m1Λ
, respectively. Now we consider a general case in

which both of the gratings consist of some topological defects
with the given values of defect numbers at places in which the
fundamental or higher-order frequencies of the gratings are
equal. At the vicinity of a point that two gratings have the same
frequency components of m1G2 and �m2G2, and the gratings

Fig. 6. (a) Defected linear grating with a sinusoidal profile and a period of Λ � 0.857 cm. The grating has seven defect points with defect
numbers of l 2 � �1 chosen at x � 0, � 3.5 cm, � 7 cm, � 10.5 cm, and x � −10.5 cm points and with a defect number of l2 � �3 locates
at x � −3.5 cm and with a defect number of l2 � �2 locates at x � −7 cm. The locations of all the defect points are determined by the red squares
and the structure of the grating is enlarged by suitable insets at those points. (b) A Fresnel zone plate with a sinusoidal profile and s � 0.3 cm2.
(c) Superimposition of the introduced structures in (a) and (b) where higher spatial frequencies are eliminated. In (c), as the central pattern is the
initial pattern of the zone plate, it is not manipulated by the defect of the linear grating. At the right side, the subtractive term moiré pattern appears
around x � �3.5 cm with a defect number of −1, and at the left side, around x � −3.5 cm the additive term moiré pattern appears with a defect
number of �3. The values of the above-mentioned length parameters are valid when the sizes of all subfigures are 24 cm × 3 cm.
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defect numbers are l1 and l 2, using Eq. (28) the defect number
of the resulting moiré pattern can be written as

lmoire 0 � �m1l1 � m2l 2�, (29)

where the plus sign corresponds to the additive term moiré
pattern and the minus sign shows the subtractive term
moiré pattern.

Nowwe consider some different cases.When both of the gra-
tings have sinusoidal profiles, jm1j, jm2j � 0, 1, additive and
subtractive term moiré patterns are resulted by the first-order
harmonics of the gratings. The resulting patterns have zone plate
shapes with a zone plate constant of s and centers located at
x � 	 s

Λ. Now consider that the linear grating consists of some
topological defects in which two of them are located at places
where both of the gratings have the same fundamental frequen-
cies. At the vicinity of these points, as is apparent from Fig. 6, the
resulting moiré patterns appear as spiral zone plates. Each of
the moiré patterns has the same defect number as the linear gra-
ting at the corresponding point, lmoire 0 � �l 2, where plus is for
the left side pattern and minus is for the right side pattern.

In Fig. 7(a) a linear grating with a binary profile consisting of
some defects at different points is illustrated. The defect points
or dislocations are selected over areas in which the gratings have
almost equal frequency harmonics. In Fig. 7(b) a Fresnel zone
plate with a sinusoidal profile is shown. In Fig. 7(c) instantane-
ously resulting moiré patterns of the first- and higher-order

frequencies of the linear grating and first-order frequency of
the Fresnel zone plate at different positions are shown. The de-
fected points of the linear grating are chosen at places in which
the contributed frequencies of the gratings at those points are
equal. As is apparent from Fig. 7(c), other spiral zone plate
patterns simultaneously appear over the superimposed area in
which the centers of the patterns are located at x � 	 m2s

Λ with
a defect number of lmoire 0 � �m2l2.

In Figs. 8–10 various cases of the superimposition of a zone
plate with a binary profile on a linear grating with a sinusoidal
profile are presented. Again, the defect points of the gratings are
selected over areas in which the gratings have almost equal fre-
quency harmonics. In Fig. 8 the linear grating has some defect
points. In Fig. 9 the zone plate consists of some defect points.
In Fig. 10 both of the superimposed structures have some de-
fect points at locations in which their spatial frequencies or
their higher harmonics are equal.

We see that, in the superimposition of a defected Fresnel
zone plate having a binary profile and a defected linear grating
with a sinusoidal profile, additional spiral patterns appear at the
vicinity of the central spiral zone plate pattern, x � 	 s

m1Λ
, with

the topological defects equal m1l 1 � l 2 (see Figs. 8–10).
It should be noted that in the view of Figs. 5–10 through an

LCD screen or over a printed page with a low dots per inch,
sometimes unwanted moiré fringes appear at different locations
that differ from the main moiré fringes discussed in the paper.

Fig. 7. (a) Defected linear grating with a binary profile and an opening number of 0.2 and a period of Λ � 0.857 cm. The linear grating has seven
defect points with defect numbers of l2 � �1 chosen at x � 0, � 3.5 cm, � 7 cm, � 10.5 cm, and x � −10.5 cm points and with a defect
number of l2 � �3 at x � −3.5 cm and with a defect number of l2 � �2 at x � −7 cm. The locations of all defect points are determined by the
red squares and the structure of the grating is enlarged by suitable insets at those points. (b) Fresnel zone plate with a sinusoidal profile and
s � 0.3 cm2. (c) Superimposition of the gratings presented in (a) and (b). In (c), six moiré patterns of different pairs of frequencies of the gratings
are shown. They simultaneously appear at x � �3.5 cm, x � �7 cm, and x � �10.5 cm with defect numbers of −1, −2, and −3, respectively, and
at x � −3.5 cm, x � −7 cm, and x � −10.5 cm with defect numbers of�3,�4, and�3, respectively. Here, again, the central zone plate shows the
main pattern of the Fresnel zone plate and is not a moiré pattern. Therefore, it cannot reflect the dislocation of the defected grating. For the
subtractive term moiré patterns on the right side, the defect numbers are lmoire 0 � �m1l1 − m2l2�, and for the additive term moiré patterns on
the left side, the defect numbers are lmoire 0 � �m1l1 � m2l 2�, where m1 and m2 are the contributed frequency orders of the defected linear
and Fresnel gratings, respectively (here, m1 � 1 and m2 � 1, 2, 3). The values of the above-mentioned length-related parameters are valid when
the sizes of all subfigures are 24 cm × 3 cm.
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Fig. 9. (a) Defected Fresnel zone plate with a binary profile and an opening number equal to 0.2, and s � 0.3 cm2, where seven defect points
with defect numbers of l 1 � �1 chosen at x � 0, � 3.5 cm, � 5.25 cm, � 10.5 cm, and x � −3.5 cm points and with a defect number of l 1 �
�2 at x � −5.25 cm and with a defect number of l1 � �3 at x � −10.5 cm. (b) A linear grating with a sinusoidal profile and a period of
Λ � 0.286 cm. (c) Superimposition of the presented gratings in (a) and (b). As is seen in (c), at least six spiral-like patterns appear with topological
defects equal to �3 at x � �3.5 cm, equal to �2 at �5.25 cm, equal to �1 at �10.5 cm, equal to �3 at x � −3.5 cm, equal to �4 at
x � −5.25 cm, and equal to �3 at x � −10.5 cm. Again, the central spiral pattern is not a moiré pattern and shows only the main pattern
of the Fresnel zone plate. The values of the above-mentioned length-related parameters are valid when the sizes of all subfigures are 24 cm × 3 cm.

Fig. 8. (a) Defected linear grating with a sinusoidal profile and a period of Λ � 0.286 cm. The linear grating consists of seven defect points with
defect numbers of l2 � �1 chosen at x � 0, � 3.5 cm, � 5.25 cm, � 10.5 cm, and x � −3.5 cm points and with a defect number of l2 � �3
at x � −10.5 cm and a defect number of l 2 � �2 at x � −5.25 cm. (b) A Fresnel zone plate with a binary profile and an opening number equal to
0.2, and s � 0.3 cm2. (c) Superimposition of gratings introduced in (a) and (b) where, here again, higher spatial frequencies are eliminated. As is
apparent from (c), at least six spiral-like patterns appear at x � �10.5 cm,�5.25 cm, and�3.5 cm with the same topological defects of −1 and for
the point selected at x � −10.5 cm with a topological defect of�3, at −5.25 cm with a defect number of�2, and at −3.5 cm with a defect number
of �1. Using m2 � 1 and m1 � 1, 2, 3 in lmoire 0 � �m1l1 � m2l 2� topological defects of the moiré pattern can be determined. The values of
length-related parameters are valid when the sizes of all subfigures are 24 cm × 3 cm.
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5. CONCLUSION

A simple and comprehensive approach was presented for the
moiré fringes formulation, and moiré fringes of combinational
frequencies were classified into four classes: the conventional
moiré pattern, moiré fringes of higher-order harmonics,
higher-order moiré patterns, and pseudo-moiré patterns. The
reciprocal vectors approach was used in distinction of the
higher-order moiré patterns from the first-order moiré fringes
of higher-order harmonics. We determined the general condi-
tions for simultaneous formation of first-order moiré patterns
of different pairs of higher-order frequencies. By the aid of some
typical examples based on computational simulations, a de-
tailed development of the proposal was presented. It is shown
that in the superimposition of two gratings in which at least one
has a varying period and another has a non-sinusoidal profile,
simultaneous first-order moiré patterns are formed at different
zones of the superimposed area. As a special case, superimpo-
sition of a liner grating and a Fresnel zone plate was investigated
with more details when one or both of gratings have binary
profiles and consist of some topological defects at the areas that
two gratings have the same frequency components. We showed
that a given dislocation of the superimposed gratings appears as
a dislocation on the resulting moiré pattern and the moiré pat-
tern’s defect number multiplied by the order of contributed
combinational frequencies.

The presented approach can be used for interpreting the
daily-life-observed simultaneously formed first-order moiré
patterns, such as different moiré patterns observed on an image
of an escalator grabbed by a digital camera or the same patterns
appearing on the image of a fence recorded with a skew angle.
By analyzing the resulting moiré patterns one can specify the
corresponding imaging systems, periodic structures, and geom-
etry of the respective imaging setups.
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