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Abstract: In this paper, we introduce a new rotation-sensitive and direction-resolved homodyne
laser-Doppler vibrometry method for rigid body vibration study that is based on the discrete
Fourier-transform of successive 1D profiles of the moving interference fringes recorded with a
1D array detector. By investigating the temporal evolution of the spatial phase distribution of the
1D profiles of the interference fringes, the out-of-plane translational and rotational vibrations of
the vibrating object are simultaneously determined. We use a direction-cosine-based approach to
establish the theory of the measurements. The merits and limitations of the proposed method
is described. We show that the proposed method can be used for detection of both tip and tilt
changes and out-of-plane displacement measurements of a rigid body using a couple of parallel
1D array detectors. In addition, we show that the presented method can be also used on optical
diffused surfaces by adding three lenses in a corner-like arrangement to the detecting system.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

Laser-Doppler Vibrometry (LDV) is an attracting method because of its non-contact, non-invasive,
and remote action features. The signal from a typical homodyne LDV is insensitive to the
motion direction [1]. Some techniques were used to overcome this deficiency [2,3,4]. We have
recently employed two simple and low-cost methods based on the chasing of the straight-line
interferometric fringes in order to give motion-direction-sensitivity to the homodyne LDV. In
the first method, three point-detectors were used to extract the temporal-spatial phase of the
interferometric fringes profile, using the spatial phase shift technique [5]. In the second method
the chasing of the fringes were done by employing a 1D array detector to construct the space-time
image which contain all the needed information to reconstruct the translational out-of-plane
displacement of the object under the test [6].
On the other hand, in the surface profilometry of an object, if one produces a high-spatial-

frequency fringe pattern, it is possible to reconstruct the surface profile of the object by a
single-shot of the interference pattern without the need for temporal phase shift [7,8,9].

In this work, we introduce a modified homodyne LDV method that is capable of simultaneous
measurement of the out-of-plane translational and rotational (including both tip and tilt angles)
vibrations using a couple of parallel 1D array detectors. Theory of the work is presented using
the direction cosines of the normal vector of the vibrating object and practical vibrometry results
will be presented. We benefit discrete Fourier-transform (DFT) to extract the instantaneous 1D
phase profiles of the interference fringes for the data of the 1D array detectors. We experimentally
use the proposed method in the measurement of the out-of-plane translational and rotational
(only tip angle) vibrations of a rigid body, using a single 1D array detector for simplicity. The
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spatial-temporal phase profiles of the 1D array detector release the translational and rotational
vibration waveforms, simultaneously.

It worth noting that one could measure the vibrations of a non-rigid body by employing a
2D sensor using simultaneous phase shifting techniques [10], but in such a case, the maximum
measurable parameters of the vibration would be limited by the speed of the 2D array, which in
general is lower than a 1D array.

2. Carrier pattern homodyne LDV

The temporal behavior of the intensity distribution in a well-aligned Michelson’s interferometer
(Fig. 1) represents contour fringes described by

I(x, y, t) = a(x, y) + b(x, y) cos[φ(x, y, t)], (1)

where a and b are the DC level and modulation of the pattern, respectively. a and b are slowly
varying functions of the position. φ is the phase lag of the measure beam relative to the reference
beam. φ has generally position and time dependence that contain the translational and rotational
information of the surface under the test. Because the cosine function is not a monotonic function,
in general it is not possible to extract φ directly. Instead, if the reference mirror and test mirror
(the body under the test) of the interferometer are tilted (say both the reference and measure
beams experience tip/tilt angles) the corresponding beams will have oblique incidence on the
observation plane. On the observation plane, k-vectors of the interfering beams can be written
using their direction cosines:

kr,m = kαr,mx̂ + kβr,mŷ + kγr,mẑ, (2)

where k shows the wavenumber of the laser beam, r and m denote reference and measure beams,
α, β and γ show the direction cosines of the k-vectors corresponding to the x̂, ŷ, and ẑ directions
respectively (say α = cos[∠(k,x̂)] and so forth). The interference pattern on the observation
plane (z = 0 plane) can be calculated as

I(z = 0) = a + b cos[k(αm - αr)x + k(βm - βr)y + φtr], (3)

where φtr shows a part of fringes’ phase φ that is only originated from the translational
displacement. To remove beam displacement on the observation plane due to angular deviation
of the interfering beams, we employed a relay-imaging system to image both of the mirrors
simultaneously on the observation plane (Fig. 1). The intensity distribution presented in Eq. (3) has
high spatial frequencies fx = (αm − αr)/λ and fy = (βm − βr)/λ along x- and y-axis, respectively,
which is modulated by the information function φtr, where λ is the wavelength of the beams.
Here fx depends only on α and not on β and similarly fy depends only on β. Therefore, in the
direction-cosine-based analysis, by choosing fixed values for αr and βr, the interference fringes
period in the x- and y- directions directly release the direction cosines of the measure beam.

According to the reflection law and magnification property of the relay imaging system, in the
paraxial approximation, the direction cosines of the vibrating object are related to the direction
cosines of the measure beam at the observation plane by αobj = αmM/2 and βobj = βmM/2.

In practice, the use of 1D intensity profiles recorded by a 1D array detector(s) reduces instrument
and process costs, remarkably. In the use of 1D array detector, to have the maximum spatial
frequency of the fringes on the detector, fringes are tuned to be aligned almost perpendicular to
the detector’s array. In this scheme we consider array detector direction as y- axis.
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Fig. 1. Experimental setup for the measurement. The upper left inset shows the vibrating
mirror (see Visualization 1).

Now let us rewrite Eq. (3) along a line parallel to y-axis, at x = x1

I = a + b cos(2πfyy + ϕ), ϕ = 2πfxx1 + φtr. (4)

Taking Fourier transform of Eq. (4) leads to

F (I) = F (a) + F (
b
2

e−i[2πfyy+ϕ]) + F (
b
2

ei[2πfyy+ϕ]). (5)

For an enough large value of fy, three components of Eq. (5) are distant from each other in the
Fourier domain. Isolating one of the side lobes of the frequency components, we calculate the
total phase 2πfyy + ϕ using inverse Fourier transform of it [7].

For a constant αm, the time evolution of 1D intensity profile presented in Eq. (4) is enough for
extraction of the out-of-plane translational vibration simultaneously with changes of the βm. For
such a case if αm = 0, the direction cosine βm uniquely specifies the tilt angle of the measure
beam θm, via relation sin θm = βm, because the angles ∠(k,ŷ) and θm are complementary angles.
For small angular deviations, which is true for our cases (as will be shown in the following
sections) we will replace the sine function with its argument. The tilt angle of the object will be
θobj = βm/2M.
As a given frame of the 1D fringe profile has a constant spatial period, its phase has a linear

function of y. During vibration of the object, y-intercept of this linear function determines the
out-of-plane displacement of the object and its slope changes determine the time evolution of the
direction cosine βm of the measure beam. Besides, a change in the direction cosine αm leads to
a change in fx, which is equivalent to the rotation of the fringes. With the aid of two 1D array
detectors implemented parallel to each other, it is possible to determine direction cosine αm (See
Visualization 1).

Using temporal evolution of the phase values detected by the detectors at a given altitude y, we
determine temporal evolution of the fringes direction. Evolution the fringes direction releases
evolutions the fringes period in the x-direction and fx (see Fig. 2):

d
dt
Λx = Λy

d
dt
(tan θF) =

Λ2
y

2πd
d
dt
(ϕD2 − ϕD1 ), (6)
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where ϕD1 and ϕD2 are the extracted phase values by the sensors at the given altitude. Using
temporal evolution of Λx, the temporal evolution of the corresponding direction cosine αm, and
the orientation of the object will be declared.

Fig. 2. Employing two parallel 1D sensors to extract the fringes angle.

3. Experimental implementation

Using the proposed homodyne LDV method, we measured vibrations of a flat mirror attached to
one end of a metal strap (upper-left inset of Fig. 1). Neglecting the changes of the direction cosine
α, the general motion of the mirror can be considered in two dimensions and can be decomposed
to a translational motion of its center relative to a reference frame and a rotational motion around
its center. We used a linear array sensor, TSL1402R from TAOS along y-direction for capturing
the instantaneous fringe profiles. This sensor has 256 pixels of size 63.5 µm × 55.5 µm with 63.5
µm spacing between the centers of the adjacent pixels (16.25 mm of total length). The driver
of the sensor can yield maximum sampling rate of RL = 19157 line/sec. Due to the suspended
form of the mirror mounting, the fringe displacements are mainly in the vertical direction. Using
the proposed method, we measured the impulse response and the reaction of the system to air
blowing. The procedure of extracting the motion of the mirror is demonstrated in Fig. 3 (see also
Visualization 2). During the vibration, we saved the 1D fringe profiles in a computer. By sewing
successive 1D fringes profiles, we obtain a space-time image (STI) that contains all the mirror
vibration information. We applied the DFT analysis to each column of the STI and extracted
corresponding phase profiles. In the discrete Fourier transform of the 1D data, to get rid of the
edge artifacts, after transforming procedure we cut 19 pixels from each ends of the resulted phase
profiles. The motion of the mirror is calculated using 2D phase profile of the STI that is a wavy
slanted surface. Along space coordinate, it has a mean slope and along time coordinate, it shows
an oscillating behavior. After removing mean slant of the STI phase profile, as the motion is a
combination of the translational and rotational vibrations, the instantaneous slope of the resulted
phase profile along space coordinate determines angular changes of the measure direction cosine,
βm. The mean value of the 1D phase profile yields the instantaneous out-of-plane displacement
after applying a transformation factor of λ/4πM. The spectra of the translational and rotational
vibrations are demonstrated in Fig. 4.

https://doi.org/10.6084/m9.figshare.11295683
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Fig. 3. (a) Recorded space-time image of the 1D fringe-profile during mirror vibration. (b)
Fringe profile at a give frame correspoding to the vertical dashed line in (a). (c) Homodyne
signal recorded by the pixel No. 100 of the sensor depicted by a horizontal dashed line in
magenta color in (a). (d) The extracted phase from the Fourier analysis. The periodic form
of the profile imposes a mean slant to the reconstructed phase. (e) shows the displacements
of a measuring line on the vibrating mirror by removing the average slant fom (d) and
applying the transformation factor. (f) demonstrates the displacements of central point of
the measuring line and calculated changes of the miror tilt (see Visualization 2).

https://doi.org/10.6084/m9.figshare.11295683


Research Article Vol. 28, No. 6 / 16 March 2020 / Optics Express 8663

Fig. 4. The typical spectrum of the translational and rotational vibrations of the mirror. The
inset shows the spectra in a closer view. Because of spectral leakage of DFT, the locations
of the spectrum peaks and their heights may differ from the actual values. In order to extract
the peaks location and height, a 32 times zero-padding DFT is used for extraction of the
vibration parameters. Due to the specific structure of the vibrational system (pendulum-like),
the spectra of the rotational and translational vibrations are correlated.

4. Limitations

Limitedness of the spatial resolution and number of pixels (N) of the array sensor and its data
acquisition rate will limit the measuring capability of the method. On the other hand, the intensity
signal detected by a pixel of the array sensor is a homodyne signal, which is typically a chirped
signal (see Fig. 3(c)). If the analogue bandwidth of the instrument is not wide enough the
transmitted electrical signal will be deformed and the peak-to-valley (PV) of the homodyne
intensity signal will decrease in the regions that the temporal frequency is high. Effect of the
limited bandwidth of the transmission line on a homodyne signal is typically demonstrated in
Fig. 5. This may lead to errors on the extraction of the vibrational parameters. In the case of pure
translational vibration, all of the pixels of the sensor experiences the same intensity variations
so the PV of the profile will change as time for all of the pixels in a same manner. In this case,
the low bandwidth will limit the bit-depth of the recorded spatial profile, which subsequently
will limit the resolution of the measurement. For a high-amplitude rotational vibration, this
limitedness leads to an amplitude modulation of the detected profile, because the temporal
intensity variations differ for different pixels. Pixels near to the point conjugate to the vibration
axis, experience lower intensity changes and pixels far from it experience more rapid intensity
changes. Albeit based on the following calculations, for the used array sensor the maximum
measurable vibration amplitude, mainly limited by the spatial specifications and sampling rate of
the sensor. The sensor can operate up to 8 MHz (compare with RL<20 kHz of the sampling rate),
which indicates that the analogue bandwidth is not at all a limiting parameter.

Here we describe how the spatial specifications and sampling rate determine the measurable
vibration parameters. In order to calculate the capability borders of the proposed method, we
consider again a flat reflecting mirror with a general two-dimensional motion. The fringe pattern
lines are considered perpendicular to the array direction. Spatial resolution and number of pixels
of the sensor are the determinant factors to sense the periodicity of the carrier pattern. The
minimum measurable spatial frequency is zero. However, in order to implement the proposed
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Fig. 5. (Left) A typical chirped homodyne signal of a vibration with an amplitude of A = 2λ.
(Right) The detected signal with a band-limited detection system.

method via isolating the one of the side frequency components of the DFT, the recorded data
should covers at least two periods of the fringe pattern. On the other hand, the highest value
for the spatial frequency is determined by the Nyquist’s criterion. Therefore, with δy as the
inter-pixel distance, the range of spatial frequencies in DFT will be

fy =
2

Nδy
:

1
Nδy

:
N/2 − 1

Nδy
. (7)

Total frequency span, ∆fy and mean value, fy are accordingly

∆fy =
1
δy

(
1
2
−

3
N

)
, fy =

1
δy

(
1
4
+

1
2N

)
. (8)

In order to utilize all of the potential of the instrument for measuring the angular vibration, one
should tune the angle of the reference mirror to a value that in the equilibrium angle of the
vibrating object, the produced spatial frequency be fy = fy. In this case, the maximum angular
deviation of the vibrating object will be in the range ±∆fy/2. Therefore the maximum measurable
direction cosine βobj, max is

βobj.,max = Mλ/4 × ∆fy, (9)

which is accessible when the direction cosine of the reference mirror βref. mirror is tunes to an
amount of

βref. mirror = Mλ/2 × fy. (10)

In our case with M = −1.5 and λ = 0.633 µm and considering N = 256 and δy = 63.5 µm of the
sensor, the maximum measurable amplitude for angular vibration is βobj, max = 1.825 × 10−3,
with βref. mirror = 1.884 × 10−3.

Now we determine limitations caused by the finite sampling rate. In the time interval between
two successive line capturing, the phase change in any point of the measurement region should not
exceed π radian, otherwise, the phase continuity will be spoiled. This means that the maximum
out-of-plane displacement of any point on the vibrating object should not exceed Zmax = Mλ/4
in the time interval between two successive sampling times δt = 1/RL. For the considered
two-dimensional motion, the maximum displacement during δt occurs at one of the either ends
of the measuring line that is given by

Zmax = ZC, max + `βobj, max/2, (11)

with ZC, max as the maximum displacement of the center of the measuring line. ` is the length of
the measuring line and βobj, max is maximum angular deviation of the object around its center.
Maximum displacement occurs when the measuring time span is centered at a quadrature point
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(a point with maximum velocity). Using this fact the maximum translational and rotational
displacement for corresponding harmonic vibrations in a time interval of δt = 1/RL are as below:

ZC, max = Z(t = 1
2RL
) − Z(t = −1

2RL
) = 2A sin( πftr

RL
),

βobj, max = βobj(t = 1
2RL
) − βobj(t = −1

2RL
) = 2βobj,0 sin( πfrot

RL
),

(12)

with A and βobj,0 as the amplitude of the translational and direction cosine βobj vibrations,
respectively. Likewise, ftr and frot are corresponding vibration frequencies. Therefore, Eq. (12)
can be written as

Zmax =
Mλ

4
⇒ A sin

(
πftr
RL

)
+
`

2
βobj,0 sin

(
πfrot
RL

)
=

Mλ

8
. (13)

In the case of independent translational and rotational vibrations, for given values of ftr and frot, the
maximum measurable values for amplitudes A and βobj,0 should satisfy Eq. (13). This equation
with the fact that ftr, frot ≤ 2/RL (Nyquist’s criterion), determines the measurable parameters of
a two-dimensional vibration. In many practical cases, the translational and rotational vibrations
have the same frequency, f (e.g. for a rigid object with a rotational vibration around an axis that
resides outside of the measurement region). In such a case, Eq. (13) will have a simpler form of

A +
`

2
βobj =

Mλ

8 sin(πf /RL)
. (14)

The magnification M expands the applicable region in the expense of reducing the size of the
measurement line.

5. Additional discussion: vibrometry of a non-mirror solid object

The method described above, is useable for vibrometry of a solid object having polished surface
in which it can be considered as a flat mirror that we call it “mirror-like surface”. A vibrating
mirror-like surface will not affect the form of the wavefront of the measure beam, and only
approximately reverses its Poynting vector and changes its overall phase. The above-presented
method is not usable for a non-mirror-like vibrating surface. Nevertheless, it is known that by
inserting a lens in front of such a non-mirror-like vibrating object, one can produce a nearly flat
wavefront of the beam after reflection from the object and retransmitting it through the lens. The
only requirement is the object surface should has a reasonable reflection toward the inserted lens.
The relay imaging system must be tuned to image the inserted lens on the detector. We previously
used this technique to overcome the effect of the local curvature of the object under the test [6].
However, in such a circumstance, the system will detect only the translational vibration, and the
rotational vibration has no effect on the fringes pattern. For simultaneous measurement of the
translational out-of-plane and rotational vibrations of a non-mirror-like solid object, we propose
a modification to the system described in the previous sections. By inserting three lenses in a
corner-like arrangement instead of a single lens, one can produce three focus spots on the surface
of the vibrating object (see Fig. 6). Now there were be three measure beams that their respective
phase delays are governed by the spatial locations of the lenses and the out-of-plane displacement
of the object at the focal points. Two vertical lenslets produce two interference patterns vertically
that can be recorded using a single 1D array detector. These patterns are analyzed separately;
the evolution of each pattern declares the out-of-plane translational motion of the object at the
corresponding points. By comparing the displacements at these two points, the β direction cosine
can be calculated. Comparing patterns of two horizontal lenses, one can extract the temporal
evolution of the α direction cosine, too. For analyzing of the patterns, one can use the method
described in this paper, or by fringe tracing method [6,11].
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Fig. 6. The use of three-lens array in the proposed method for simultaneous measurement
of the translational and rotational vibrations of a non-mirror-like object. A set of three lenses
(or micro-lenses) form a corner-like array used in the path of measure beam close to the
vibrating object. Two lenses located in the vertical direction shown in the setup (L1 and
L2) produce two measure beams which are depicted with different colors for the ease of
demonstration. The patterns at the detector(s) plane are shown in the upper-right inset figure.
Patterns P1, P2 and P3 are produced by interfering of the beams passed through the lenses
L1, L2 and L3, respectively with the reference beam. The translational displacements and β
direction cosine can be calculated from the patterns on a single detector D1, if the patterns
analyzed separately using the Fourier analysis or space-time fringes method. Using the third
lens (L3) and producing the pattern P3 on the second detector D2, the displacement data for
the third point is calculated. Comparing these data with the date of lens L1, one can declare
the α direction cosine with the similar analysis described in the previous sections.

6. Conclusion

A rotation-sensitive and direction-resolved homodyne laser-Doppler vibrometry method was
introduced for rigid body vibration study. We used a direction-cosine-based approach to establish
the theory of the measurements. The conventional LDV method abled rotation- and direction-
sensitivity just by using a 1D array detector, therefore this modification of the LDV setup is
simple and low-cost. In practice, with the aid of a 1D array sensor, we measured motion of a
line on a mirror attached to a mechanical oscillator. Using discrete Fourier-transform of moving
fringes’ profiles, we measured simultaneously the translational and rotational vibrations of the
vibrating line. The potential effect of the limited transmission bandwidth of the instrument
was discussed. For our case, the bandwidth of the instrument is adequate and is not a limiting
factor. The limitations of the method are practically due to spatial specifications of the sensor
and sampling rate of the driver, which both of them were investigated in detail. The proposed
method can be experimentally applied for the study of three-dimensional vibration of a rigid
body with the aid of only two 1D detectors.

The method was described for the case that the object is a polished, flat, and reflective surface.
In order to implement the presented method on a non-mirror-like object such as optical diffused
surfaces, a modification to the optical setup was proposed using a three lenses array.
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