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We experimentally demonstrate and theoretically predict a new and unprecedented optical carpet that
included all the geometric shadow, and far-field and near-field diffraction patterns at the transverse plane
in the diffraction from a radial grating illuminated by a plane wave-front. The main feature of using radial
grating is the continuous change of spatial period along the radial direction. Therefore, the geometric
shadow, and the near-field and far-field diffraction regimes are mixed at various propagation distances
and the traditional definitions for the different diffraction regimes would not apply here. We show that
for a given propagation distance, at a certain radial distance the shadow regime changes to the near-field
regime and at another certain radial distance the diffraction pattern changes from a near-field to a far-field
case. © 2017 Optical Society of America
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1. INTRODUCTION

In the passing a light beam wave-front through a transmission
structure such as a grating, three different behaviours can be ob-
served at various propagation distances. At very close distances
to the structure the geometric shadow is observed. By increasing
propagation distance, first near-field then far-field diffraction
patterns are produced. For a given propagation distance, by
decreasing the structure dimension, both near-field and far-field
regimes get close to the structure plane. Far-field diffraction pat-
tern determines spatial spectrum of the structure and its angular
form remains stable at different distances from the structure. Un-
like the geometric shadow and far-field diffraction pattern, the
near-field diffraction pattern sharply changes by propagation
distance. One of the fantastic diffraction phenomenon which
was firstly introduced in the near-field diffraction frame, is the
Talbot effect or self-imaging. That appears in the illuminating
a periodic structure by a spatial coherent light beam in which
self-images of the structure replicates at certain imaging planes
without the need for a lens [1, 2]. It was used later in the geo-
metric shadow and far-field diffraction frames too [3, 4].

The Talbot effect has found numerous applications in the
optical domain, such as in wave-front sensing [5, 6], turbulence
characterization [7, 8], phase locking of laser arrays [9], and
many others [10]. Nowadays, the concept of the Talbot effect is
applied in various wave physics studies including nonlinear dy-
namics [11], atomic and electron beams [3, 12, 13], x-ray imaging

[14], plasmonics [15], exciton-polariton condensates [16], spin
waves [17], quantum mechanics [18] and quantum Talbot effect
[19], laser physics [20], waveguide arrays [21], matter waves
[22, 23], matter-wave interactions [24], and antimatters [25].

In the near-field diffraction from a grating, the intensity pat-
tern over a plane includes propagation axis and grating vector
which is called Talbot carpet [26, 27]. All aspects of Talbot effect
such as formation of self- and sub-images respectively at the Tal-
bot and fractional Talbot distances appear on the Talbot carpet.
A report on the realization of the conventional Talbot carpets
over the longitudinal planes has been presented in [27].

We have recently proposed a comprehensive and rigorous
mathematical approach for the treatment of self-imaging [28].
The work consists a detailed analytical and numerical stud-
ies of Fresnel images of a considerable number of 1D periodic
structures lying in between neighboring self-images (exact self-
images and images laterally shifted by half a period). It is shown
that by an appropriate designing of the transmission profile of a
grating, it is possible to enhance the contrast value of the Talbot
self-images namely at the quarter-Talbot distances.

Here for the first time, we demonstrate theoretically and ex-
perimentally the formation of Talbot carpet at the transverse
planes, consisting all the geometric shadow and the near-field
and far-field diffraction patterns in the propagation of a plane
wave from a radial grating. We present a detail theoretical calcu-
lation by the aid of Fresnel–Kirchhoff integral, for the diffraction
from an amplitude radial grating having sinusoidal and binary
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profiles. Also diffraction patterns are simulated by the aid of
free-space transfer function and experimental work is done with
a very simple setup. The results of all three ways of the study
are consistent. We observe unprecedented patterns along the
radial direction at the transverse planes. Theoretical calculation
is done in the polar coordinates.

Here, due to the continuous change of spatial period along
the radial direction, three geometric shadow, near-field and far-
field diffraction regimes are mixed at various propagation dis-
tances and the traditional definitions for the different diffraction
regimes are violated. We show that unlike the diffraction from
conventional gratings, here general shape of the diffraction pat-
terns does not change by the propagation of the beam.

At a given propagation distance, over the transverse plane the
geometric shadow, the near-field, and far-field diffraction pat-
terns are formed at large, intermediate and small radial distances,
respectively. This feature raised by the continuous change of
the spatial period of the structure along radial direction. For
a given propagation distance, we determine conditions for the
transitions from the geometric shadow to the near-field and from
the near-field to far-field diffraction regions and predict which
patterns would be seen at which distances.

It is worth mentioning that, self-imaging of conventional
linear gratings has already been investigated in the polar co-
ordinates [29]. Also, a spatial evolution of a Gaussian beam
diffracted by an out-of-center sector of a radial grating has been
previously reported [30, 31]. But to the best of our knowledge,
the general case of diffraction from radial gratings has not been
considered in the literature so far.

2. DIFFRACTION FROM 2D STRUCTURES SEPARABLE
IN THE POLAR COORDINATES

Here, theory of the diffraction from 2D structures separable in
the polar coordinates is presented. Assume f (x′, y′) as com-
plex amplitude of the light field immediately after the structure,
(z = 0), and g(x, y) as the resulted complex amplitude at dis-
tance z from the structure, by using Fresnel–Kirchhoff diffraction
integral [32], we have

g(x, y) = (1)

h0
∫ ∞
−∞

∫ ∞
−∞ f (x′, y′)eiα[(x−x′)2+(y−y′)2]dx′dy′,

where h0 = 1
izλ exp(ikz) and α = π

zλ , in which λ is the wave-
length of the light beam and k = 2π

λ is the wave-number. In the
polar coordinates equation 1 gets following form

g(r, θ) = (2)

h0eiαr2 ∫ ∞
0

∫ 2π
0 r′dr′dθ′ f (r′, θ′)eiαr′2 e−2iαrr′ cos(θ′−θ),

where (r′, θ′) and (r, θ) are the polar coordinates at input and
output planes, respectively (see Fig. 1 ) . For a 2D structure
separable in the polar coordinates system at z = 0, we get

f (r′, θ′) = fR(r′) fΘ(θ
′). (3)

Now, equation 2 can be written in the following form

g(r, θ) = (4)

h0eiαr2 ∫ +∞
0 r′dr′ fR(r′)eiαr′2 ∫ 2π

0 dθ′ fΘ(θ
′)e−2iαrr′ cos(θ′−θ).

Here, by using the Jacobi–Anger expansion [33], we have

e−2iαrr′ cos(θ′−θ) =
+∞

∑
n=−∞

(−i)n Jn(2πρr′)e−in(θ′−θ), (5)

where i is the imaginary unit and Jn is the n-th Bessel function
of the first kind [33]. As fΘ(θ

′) is inherently a periodic function
with the period 2π, then it can be expanded by using Fourier
series as

fΘ(θ
′) =

+∞

∑
m=−∞

cmeimθ′ , (6)

where cm is mth Fourier series coefficient. By replacing equations
5 and 6 in equation 4 and using Hankel transform of order n of
the function f (r) [34]

Hn{ f (r)} = 2π
∫ +∞

0
f (r)Jn(2πρr)rdr, (7)

we get

g(r, θ) = h0eiαr2
+∞

∑
n=−∞

cn(−i)neinθHn{ fR(r)eiαr2}, (8)

where ρ = r
λz , and we used following identity

2π∫
0

ei(m−n)θ′ dθ′ = 2πδm,n, (9)

in which δm,n is the Kronecker delta.
Equation 8 presents the diffraction from 2D structures sepa-

rable in the polar coordinates.

3. DIFFRACTION FROM RADIAL STRUCTURES

Here, as an important subset of 2D structures separable in the
polar coordinates, we define and consider radial structures. We
call a 2D structure as a radial structure, when in its transmission
function there is not radial dependency. Therefore, a radial
structure is a 2D structure separable in the polar coordinates,
defined by equation 3, with fR(r) = 1. Now, diffraction pattern
of a radial structure by considering fR(r) = 1 in equation 8, can
be written as

g(r, θ) = h0eiαr2 × (10){
c0H0{eiαr2}+ ∑+∞

n=1(cneinθ + c−ne−inθ)(−i)nHn{eiαr2}
}

,

where we used the following identity

H−n{ f (r)} = (−1)nHn{ f (r)}. (11)

It is worth mentioning that by considering fR(r) = 1, edge
effects are neglected and structures spatial extension is as-
sumed to be infinite. By the aid of integral tables [35] for∫ +∞

0 x cos(αx2)Jn(bx)dx and
∫ +∞

0 x sin(αx2)Jn(bx)dx, it is a
straightforward task to obtain

Hn{eiαr2} = (12)

b
4 (

π
α )

3
2 e−i( b2

8α−
nπ
4 ) ×

[
J n+1

2
( b2

8α ) + i J n−1
2
( b2

8α )
]

,

where b = 2πρ. As the Hankel transform of zero order is same
as the Fourier transform, we have

H0{eiαr2} = iπ
α

e
−iπ2ρ2

α . (13)

Now, by replacing equations 12 and 13 in equation 10 we obtain

g(r, θ) = eikz × (14)

{c0 +ReiR2
∑+∞

n=1

√
π
2 (−i)

n
2 +1(cneinθ + c−ne−inθ)

×
[

J n+1
2
(R2) + i J n−1

2
(R2)

]
},
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whereR is a dimensionless quantity determined byR =
√

π
2λz r.

Equation 14 is the main result, and it shows the diffraction
amplitude from radial structures.

Fig. 1. Illustration of the diffraction geometry.

A. Plane wave diffraction from an amplitude radial grating
with a sinusoidal transmission function

Now, we consider diffraction of a plane wave from an amplitude
radial grating with a sinusoidal transmission function

t(θ′) = fΘ(θ
′) = 1

2 [1 + cos(mθ′)] (15)

= 1
2 + 1

4 (e
imθ′ + e−imθ′ ),

where m is the number of spokes of the grating. A typical am-
plitude radial grating having sinusoidal transmission function
with m = 20 is shown in Fig. 2(a).

Fig. 2. Illustration of two typical amplitude radial gratings
with spoke numbers of m = 20 having sinusoidal (a) and
binary (b) transmission profiles.

By comparing equations 6 and 15, we have c0 = 1
2 , cm =

c−m = 1
4 , and cn 6=m = 0, then from equation 14, the resulted

complex amplitude of the light filed at a propagation distance z
can be written by

g(r, θ) = eikz

2 × (16){
1 +ReiR2

√
π
2 (−i)

m
2 +1

[
J m+1

2
(R2) + i J m−1

2
(R2)

]
cos(mθ)

}
.

Diffraction pattern at a given z can be calculated by I(r, θ) =
g(r, θ).g∗(r, θ), where ∗ denotes complex conjugate.

Equation 16 specifies the diffraction amplitude of the radial
grating in both near-field and far-field diffraction regimes and
the geometric shadow. It shows the alternative change of the
diffraction fringes in transverse plane as a function of radial
coordinate, r, and as a function of propagation distance, z. As
is apparent from equation 16, the diffraction pattern has a sta-
ble form respect to R. In other words, for a constant value of
R, diffraction pattern remains unchanged, although the other
two parameters, including propagation distance, z, and radial
coordinate, r, change. For a given value of R, as r ∝

√
zR, the

diffraction pattern scales by the square root of the propagation
distance,

√
z. This means that, the trace of a given point on the

intensity distribution for different propagation distances, is not
a straight line. This feature is in consistent with the treatment of
the conventional diffraction where angular form of the far-field
diffraction pattern remains unchanged at different distances
from the structure. It also is in consistent with the treatment
of the conventional near-field diffraction where the diffraction
pattern changes very rapidly by changing propagation distance.

For a given grating, diffraction pattern I(r, θ) at a given dis-
tance can be calculated by using equation 16. In Fig. 3 (a),
calculated diffraction patterns for three sinusoidal amplitude
radial gratings with spoke numbers of m=5, m=50, and m = 75,
at a propagation distance of z = 100 cm, are illustrated. For
better illustration of the optical pattern formed at the transverse
plane we project a sector of the second pattern from the polar
coordinates to the Cartesian coordinates, Fig. 3 (b). As is appar-
ent from Fig. 3 (a), for large values of radial distances a shadow
image forms. Over an annular strip with a certain radius (or
radial distance) as shown by the latter A in Fig. 3 (b), a sub-
image or quarter-Talbot image of the structure with a number of
radial fringes equal to 2m are formed. As spatial period in this
radial distance is duplicated, in comparing to the conventional
Talbot effect, we name the pattern over the defined annular strip
as the first quarter-Talbot or sub-image of the corresponding
annular strip of the grating with the same radius. In fact, in the
vicinity and a bit larger than this radial distance, transition from
the geometric shadow to near-field diffraction is occurred. We
call this radial distance by rout. Let us relate rout to the propaga-
tion distance and spokes number. For this purpose, we need to
recall definition of the quarter-Talbot distances for the conven-
tional gratings. For a conventional grating with a period of p, its
first quarter-Talbot image is formed at a propagation distance

of z =
p2

2λ , where λ is the wavelength of the illuminating plane
wave [36]. For a radial grating, over an annular strip with a
radius of rout the spatial period in the azimuthal direction is
pout =

2πrout
m then at a given prorogation distance z, we have

rout =
m
2π

√
2λz. (17)

Other sub-images are formed at small radii that we call them
higher-order sub-images. Radial location of the second sub-
image is shown by C in Fig. 3 (b). Between the first and second
sub-images’ strips, as is shown by B in Fig. 3 (b), first half-Talbot
image with a number of radial fringes equal to m and a half
period azimuthal shift, is formed. First self-image or Talbot-
image is formed between second and third sub-images, as is
shown by D in Fig. 3 (b). By the same reasoning presented for
the sub-images, radial location of the first Talbot-image can be
determined from the Talbot distance of the conventional gratings

zT =
2p2

λ , by

rT1 =
m
2π

√
λz/2. (18)
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Let us clarify the matter with more details. Period of the struc-
ture is varying in the radial direction. But, over a given annular
strip of the structure, as the radial coordinate and the period
are almost constant, consequently self-images of this part of the
structure forms at certain Talbot distances along z axis over an
annular area with a same radial coordinate. Due to similarity
of the radial grating diffraction pattern at the transverse plane,
with the diffraction pattern of a conventional grating over a lon-
gitudinal plane that is known as the Talbot carpet, we name the
observed optical pattern as "transverse Talbot carpet" or equally
"radial Talbot carpet" and we call the area of formation of the
sub- and self-images as the near-field regime.

Intensity profiles of the first and second sub-images and first
half-Talbot and Talbot images for the grating introduced in Fig. 3
(b), are plotted in Fig. 3 (c). Also, along two radial lines passing
from the extrema values of the shadow image, the intensity
profiles are calculated and illustrated in Fig. 3(d).

A direct way for determining self- and sub-images’ radii is the
use of a recently proposed approach called "contrast variation
method" [36]. It has been shown that, in the diffraction from a
sinusoidal amplitude grating, contrast values for the self- and
sub-images are maximum and minimum, respectively. Here,
we define a visibility or equally a locally contrast value for the
resulted pattern at a given radius by

V(r) = I(r, θmax)− I(r, θmin)

I(r, θmax) + I(r, θmin)
. (19)

Now, radii of the self- and sub-images can be calculated respec-
tively by determining maxima and minima of V(r) curve, as
shown in Fig. 3 (e). We determined sub-images, half-Talbot, and
Talbot images radii by using equation 19. Their values for the
first sub- and Talbot-images are consistent with the calculated
values obtained by equations 17 and 18, respectively.

In parallel to the analytical works, we have simulated the
diffraction from the radial gratings using free space transfer
function and Matlab programming for different propagation dis-
tances. In addition, with some amplitude radial gratings, with a
diameter 3 cm and different spokes, we have recorded diffraction
patterns experimentally. In the experiment, a collimated wave-
front of the second harmonic of an Nd:YAG diode pumped laser
beam having wavelength of λ = 532 nm is propagated through
the grating. The diffracted patterns at different distances from
the grating are recorded by a camera (The Nikon D100). We
record resulted patterns with two ways having a little difference
in recording process. For recording the entire area of the diffrac-
tion patterns, we replace a diffuser on the path of the diffracted
light beam at the desired propagation distances, then by the aid
of imaging lens of the camera, resulted pattern on the diffuser
is imaged on the active area of the camera with a magnification
of about 1/2. As the use of diffuser decline the quality of the
images, in order to have high resolution diffraction patterns, we
removed imaging lens of the camera, then we record diffraction
patterns directly over the active area of the camera without any
magnification in size. In this case, as the active image area of
the camera is 23.4 mm× 15.6 mm, we lose some parts of the re-
sulted images. For both of recording arrangements, the grating,
the camera, and also the diffuser for the first case, are installed
in the set-up in which their planes to be perpendicular to the
propagation direction. The gratings’ structures were constructed
by a lithography method on transparent plates with a spatial
resolution of 1200 dpi. Diameter of the constructed gratings
was 30 mm. In the experiments, they are fully illuminated by a
uniform laser beam.

In Fig. 4 , a typical experimentally recorded diffraction pat-
tern for an amplitude radial grating with a sinusoidal profile
and having 50 spokes at a distance equal to 100 cm is shown. In
the experiment, by removing imaging lens of the camera, the
diffraction pattern is recorded directly on the active area of the
camera with a real size of 23.4 mm× 15.6 mm.

For comparing results of the experimental works with sim-
ulated diffraction patterns, for different propagation distances
from different radial gratings with a diameter of 3 cm, diffrac-
tion patterns are simulated. Also, for recording experimental
patterns, as it mentioned above, by the aid of imaging lens of
the camera, entire area of the produced diffraction patterns on
the diffuser is imaged on the active area of the camera by a mag-
nification of about 1/2. Produced simulated diffraction patterns
for three amplitude radial gratings with sinusoidal profiles and
spokes numbers of 5, 50, and 75 at three different distances of
100 cm, 150 cm, and 200 cm are shown with red color patterns in
Fig. 5. For same gratings at same propagation distances, experi-
mentally recorded diffraction patterns are shown by green color
patterns in the same figure.

From the both simulated and experimentally recorded pat-
terns of Fig. 5, it is apparent that, by decreasing radial distance,
spacing between successive sub- and self-images decreases.
Then, at a certain radial distance, near-field diffraction pattern
completely disappears so that for each pattern an intensity pat-
ternless circular area around the optical axis appears.

For a complete realization of the diffraction from the radial
gratings, we examined the cases of small propagation distances,
which is in the conventional near-field regime. In Fig. 6, cal-
culated and experimentally recorded diffraction patterns for
an amplitude radial gratings with a sinusoidal profile and 50
spokes at three different distances of 20 cm, 30 cm, and 50 cm
almost in the conventional near-field distances are shown. For
better illustration of the diffraction effect, only central parts of
the patterns with a real size of 10 mm× 10 mm are demonstrated.
Here, in order to have high resolution images as much as possi-
ble, the experimental patterns are directly formed on the active
area of the camera. By comparing pattern of Figs 5 and 6, we
see that structure of the diffraction patterns at two ranges of
the propagation distances are completely similar. It means that,
in the diffraction from radial gratings, dividing the space only
by the values of propagation distances into the conventional
near-field and far-field regimes is meaningful and values of the
radial distances should be taken into account.

As shown in Figs 3 - 6, over a given transverse Talbot plane,
the near-field regime suddenly finishes at the border of the pat-
ternless area. In other words, the outer boundary of the pattern-
less area is the inner boundary of the near-field regime that we
call it rin. Over the patternless area, the intensity value is very
small and is constant in which it can be considered as the DC
order of the far-field diffraction. Therefore, we call this area as
the far-field regime.

As is apparent from Figs 3 , 5 and 6 and based on the theoret-
ical predictions will be presented in the following, value of rin
depends on the propagation distance by

√
z. This means that, a

given point on the inner boundary of the near-field regime, rin,
propagates on a curved line trajectory instead of a straight line
path that occurs in the diffraction from conventional gratings
at the far-field regime. By increasing the number of structure
spokes, m, and value of z, radii of a given sub- or self-image ring
increases.

Finally, unlike the conventional Talbot effect, here visibility
of the self- or sub-images remains constant by propagation, see
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Fig. 3. Calculated diffraction pattern for three sinusoidal am-
plitude radial gratings with 5, 50, and 75 spokes at distance
100 cm from the gratings, (a), and projection of a sector of the
theoretically produced transverse plane Talbot carpet from the
polar coordinates to the Cartesian coordinates, (b). Calculated
intensity profiles at radii equal to the locations of first and
second sub-images (A and C plots) and first half-Talbot and
Talbot-images (B and D plots), (c). Intensity profiles along two
radial lines passing through locations of the extrema values
of the shadow image, (d). Calculated visibility of the Talbot
carpet as a function of radial distance from the optical axis, (e).
Corresponding locations of the plots are shown in (b) by the
same letters. Values of the intensities are normalized to the
value of the incident beam’s intensity (see also Visualization 1
and Visualization 2).

Visualizations 1 and 2. This means that at a given propagation
distance the transverse Talbot carpet is observable. It needs to
be mentioned that, this fact is valid for the radial gratings with
infinite radial sizes.

It will be interesting realization of some of the above men-
tioned facts by some analytical predictions by considering some
approximations on equation 16. For large values of r the Bessel
function can be written as [33]

Jm(R2)→
√

2
πR2 cos

(
R2 − mπ

2
− π

4

)
. (20)

By the use of the above approximation in equation 16, it reduces
to

g(r, θ) =
eikz

2
{1 + cos(mθ)}, (21)

where it produces desired geometric shadow.
In the vicinity of the optical axis, when r goes to zero, by

using

Jm(R2)→ 1
Γ(m + 1)

(
R2

2

)m

, (22)

equation 16 reduces to

g(r, θ) = eikz

2 × (23){
1 +
√

π(−i)
m
2 +1RmeiR2

[
R2+i(m+1)

2(
m
2 )(m+1)Γ( m+1

2 )

]
cos(mθ)

}
.

It means that in the vicinity of the optical axis, or equally at the
far-field regime and for large values of m, the intensity gets a
small and constant value, which was attributed to the DC term
of the far-field diffraction.

Radius of the inner boundary of the near-field regime, rin,
can be determined both analytically and numerically as a func-
tion of both z and m by using equations 16 and 23. Nevertheless,
analytically determining rin by the aid of mentioned equations is
not a straightforward task. For this reason, first we estimate the
farthest distance of the near-field regime for a linear grating by
considering the diffracted angles of the diffraction orders and by
using geometric relations, then we generalize the resulted state-
ment to the case of radial gratings. For a conventional grating
with a period p and a lateral extension of d, at propagation dis-
tances larger than pd

2λ , different diffraction orders do not overlap
and there is not any interference between them. As the near-field
diffraction pattern is the interference of the different diffraction
orders, therefore z =

pd
2λ can be assumed as the farthest border

of the near-field regime for the conventional gratings. Now, for
a radial grating with a spokes number of m, at a given radial
of r we set r and 2πr

m as the lateral dimension and period of the
grating, respectively, then we have

rin =

√
mλz

π
. (24)

By chasing the observed abrupt intensity changes on each
sets of the calculated, simulated, or experimentally recorded pat-
terns, above-introduced formula for the rin(z, m), can be verified.
There is a good agreement between predicted values for rin by
equation 24 and those obtained for the radius of the patternless
area of three sets of experimental, simulated, and calculated pat-
terns. We see that rin, unlike rout, is proportional to

√
m rather

than m (see Figs 3 (a), 5 and 6).
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Fig. 4. An experimentally diffraction pattern from an amplitude radial grating with a sinusoidal profile and spokes number of
m = 50 at a propagation distance equal to 100 cm recorded directly on the active area of the camera. Real size of pattern is 23.4 mm×
15.6 mm and wavelength of the impinging light was 532 nm.
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Fig. 5. Talbot carpets produced at the transverse planes by
diffraction from amplitude radial gratings with sinusoidal
profiles and spoke numbers of 5, 50, and 75 at different dis-
tances of 100 cm, 150 cm, and 200 cm from the gratings. Simu-
lated and experimentally recorded patterns are illustrated by
red and green colors, respectively. Real size of all patterns is
3 cm× 3 cm.

Fig. 6. Calculated (first row) and experimentally recorded
(second row) diffraction patterns for a sinusoidal amplitude
radial grating with 50 spokes at three different conventional
near-field distances from the structure. Real size of all patterns
is 10 mm× 10 mm.

Finally, we conclude that in the diffraction from radial grat-
ings instead of conventional diffraction, the geometric shadow,
and the near-field and far-field diffraction regimes are mixed
at various propagation distances. In Fig. 7, for a given radial
grating, boundaries between these regimes are demonstrated.
Unlike the case of conventional diffraction that the diffraction
regimes are divided by the flat borders, here the borders are
parabolic surfaces.

For a radial grating with a finite size, further considerations
are needed but it is beyond the aim of current work.

B. Diffraction from an amplitude radial grating with a binary
profile

Now, we briefly investigate the case of an amplitude radial
grating with a binary profile, Fig. 2 (b). Its transmission function
can be written as

t(θ′) = 1
2 (1 + sgn cos(mθ′)) (25)

= 1
2 + ∑+∞

l=1(Aleimlθ′ + A−le−imlθ′ ),

where sng means signum function and Fourier coefficients are
given by A±l =

1
2 sinc( lπ

2 ), in which A0 = 1
2 , A±1 = 1

π , A±2 =
0, ... . As here again fR(r′) = 1, we have

fΘ(θ
′) =

1
2
+

1
2

+∞

∑
l=1

sinc(
lπ
2
)(eimlθ′ + e−imlθ′ ). (26)

By rewriting equation 26 in the form of equation 6, c0 = 1
2 ,

cn=ml = cn=−ml = 1
2 sinc( lπ

2 ), l = 1, 2, 3, ... ., are determined
where all other coefficients are zero. Now, by use of the deter-
mined coefficients in equation 14, complex amplitude at z is
given by

g(r, θ) = eikz

2 × (27){
1 +ReiR2

∑∞
l=1 gl

[
J ml+1

2
(R2) + i J ml−1

2
(R2)

]
cos(mlθ)

}
,

where gl =
√

2π(−i)
ml
2 +1sinc( lπ

2 ). Similar to the case of the si-
nusoidal radial grating, in Fig. 8 , calculated diffraction patterns
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Fig. 7. Splitting of the space into geometric shadow and far-
field and near-field diffraction regimes for a typical amplitude
radial grating. Green surface splits the geometric shadow from
the near-field diffraction regime and blue surface splits the
near-field and far-field diffraction regimes from each other.

from three radial binary amplitude gratings with spoke numbers
of 4, 50, and 75 for a propagation distance of 100 cm are shown.

The same as the case of the sinusoidal radial grating, in Fig. 9
a typical experimentally recorded diffraction pattern for an am-
plitude radial grating with a binary profile having spokes num-
ber of 50 at a propagation distance of 100 cm is also illustrated.
Here again, in the experiment, by removing the imaging lens of
the camera, the diffraction pattern is recorded directly on the sen-
sitive area of the camera with a real size of 23.4 mm× 15.6 mm.

The simulation is done and the experimental diffraction pat-
tern are taken for three radial binary amplitude gratings with
spokes numbers of 4, 50, and 75 at four different distances of
100 cm, 150 cm, 200 cm, and 490 cm which are illustrated in Fig.
10 such as the cases of Fig. 5. Similar to the case of Fig. 6, in
Fig. 11 the calculated and experimentally recorded diffraction
patterns of a binary amplitude radial grating with 50 spokes at
three almost conventional near-field distances are presented (see
also Visualization 3).

By comparing patterns of Figs 3 – 6 with Figs 8 – 11 , we
see that diffraction patterns of the amplitude gratings with si-
nusoidal and binary profiles are very similar. Meanwhile, the
detailed investigation of the resulted patterns for the binary
amplitude case is given up to the future studies.

As the subject of the diffraction from radial phase gratings is
very close to the presented work, we have done both theoretical
and experimental works in this regard. Results of that portion
of work, have additional physical insight, and will be published
as soon as possible.

4. CONCLUSION

In this work we have reported the first theoretical prediction and
experimental observation of the Talbot carpet at any transverse
plane in illuminating a radial grating by a spatially coherent
light beam. We have shown that for the proposed structures, all

Fig. 8. Calculated diffraction patterns for three binary ampli-
tude radial gratings with 4, 50, and 75 spokes at propagation
distance of 100 cm.

three geometric shadow, and near-field and far-field diffraction
patterns are observable at the planes parallel to the structure
plane and continues distances from the structure. This achieve-
ment seems to have potential applications in the optical domain
and can be extended to a wide range of wave physics phenom-
ena in which the conventional Talbot effects were previously
used.

In parallel to the current work, we have used the diffraction
of a vortex beam from radial gratings for determining the topo-
logical charge of the vortex beam. Also, we proposed a simple
method for optical switching by the aid of diffraction of vortex
beams from radial gratings [37].

As a consequence of turning a conventional grating into a
radial grating with a central singularity, the plane boundaries
between the optical regimes have acquired curvature. The possi-
bility of a connection with optical phenomena in a gravitational
field is under investigation.
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