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In this work, the theory of self-imaging in the polar coor-
dinates for azimuthally periodic Bessel-based structures
(APBBSs) is presented. For the first time, to the best of
our knowledge, we define single- and multi-frequency
APBBSs and show that these structures have self-images
under plane-wave illumination. We also define sinusoidal
and binary-like single-frequency APBBSs and theoretically
and experimentally investigate the near-field diffraction of
these structures. The diffraction from these structures pro-
vides 2D arrays of optical traps that can be used in multi-
trapping.  © 2019 Optical Society of America
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One of the well-known phenomena observed in the near-field
diffraction is the self-imaging phenomenon or so-called Talbot
effect [1-6]. In the diffraction of a plane wave from a periodic
structure, the light beam distribution immediately after the
structure regenerates itself at certain propagation distances.
Since in this image formation there is no imaging system,
the effect is known as the self-imaging phenomenon. It is worth
noting that for pure phase periodic structures, again the Talbot
effect occurs, but such definition of the self-imaging is violated.
For instance, in the illumination of a phase grating with a plane
wave, fractional Talbot images indirectly resemble the input
pattern, in which when the input pattern consists of a binary
phase grating, the output Fresnel self-image is a binary ampli-
tude version of the same pattern [7]. In general, self-imaging is
a result of discrete superposition of nondiffracting beams [8].
The Talbot effect is conventionally known for the periodic
structures in Cartesian coordinates. In the polar coordinates,
such an effect can be observed by specific designing of the struc-
tures. In a number of studies, the self-imaging effect in the po-
lar coordinates was investigated, namely, self-imaging of the
evolute circular gratings [9], almost 2D periodic structures
[10], and /; amplitude transmittance objects [8,11]. In the dif-
fraction from structures having transmittances with no radial
dependence, say radial structures [12], the conventional
Talbot effect is not observed. However, some interesting phe-
nomena occur in the diffraction from radial structures, includ-
ing formation of monochromatic and colorful Talbot carpet at

0146-9592/19/174355-04 Journal © 2019 Optical Society of America

the transverse plane [12,13], possessing Gaussian curvature
between the plane boundaries of the optical regimes [12], flow
of the light energy toward the optical axis, and formation of an
Arago—Poisson spot-like light-bar on the optical axis in the vor-
tex beam illumination [14], and generating spatially asymmet-
ric, nondiffracting, and self-healing radial carpet, petal-like, and
twisted-intensity ring-like vortex beams, and 2D optical
lattices [15,16].

In this Letter, we show that by adding Bessel functionality to
radially periodic structures, they attain a self-imaging property.
As these structures are periodic in the azimuthal direction, we
call them azimuthally periodic Bessel-based structures
(APBBSs). The azimuthal periodicity of these structures char-
acterizes them as simple diffracting elements to produce 2D
arrays of optical traps that can be used in multi-trapping. In
a similar scheme in the Cartesian system, simultaneous optical
trapping of microparticles in multiple planes was previously
presented [17].

First we briefly present the mathematical foundation of the
work by considering the Fourier transform in the polar coor-
dinate. Considering (7, 6) as the polar coordinates in the spatial
domain and (p,¢) as the corresponding coordinates in the
spectral domain, the following properties for the 2D Fourier
transform can be verified [18]:

Flg(ne™y = ()" M, {g(n)}, (1a)

FHG(p)e?} = ()"e"H,{G(p)}, (1b)

where F and F~!, respectively, represent the 2D Fourier trans-
form and its inverse, and G(p) and g(r) are related to each
other by the Hankel transform of order », which is defined
as follows:

H,g()} = Gp) = 21 A ® ()], Qaprdr,  (2a)

H,(G()} = g(r) = 21 A ® pG(0)],2npr)dp.  (@b)

It should be noted that, as the Hankel transform and its inverse
have the same forms, both of them can be represented by a

unique symbol of H,,. Therefore, g(r) and G(p) are called a
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Hankel transform pair. Using H_,{g(7)} = (-1)"H,{g(r)} in
Eq. (1), it is easy to show that

Fig(r) cos(nb)} = (-i)" cos(np)H,{g(r)}, (3a)

FH{G(p) cos(n)} = (i)" cos(mO)H,{G(p)}.  (3b)

Let us now recall the flowing reference identities [19]:

H, 1 mpyr)} = 222, (4a)
A2 — ) . (ab)
p

where § indicates the Dirac delta function. Looking at Eq. (4),
we see that g(r) = /,(2zpyr) and G(p) = 3 5 o) are the
Hankel transforms of each other, and they construct a
Hankel transform pair. Substituting this Hankel transform pair
in Eq. (3), we obtain the following key results:

Fleos(n6)],(2xpor)} = (i) cos(ngp) L p?), (5a)

F- { cos(np) ———= % = (i)" cos(nh)/,(2rpyr). (5b)

3(p - po)

2mp
Now we utilize this result to investigate near-field diffraction
from a single-frequency APBBS. We define a single-frequency
APBBS with the following transmission function:

t(r,0) = c+ Z tol ( > cos(n), (6)

where ¢ and ¢, are arbitrary coefficients, and 7, is a character-
istic length. In the passing of a coherent plane wave through
this structure, the complex amplitude immediately after the
structure is

Vo(r,0) = c+ ) 1], Q2apor) cos(nl),  (7)
n=0

where p; is the radial spatial frequency of the structure, and its
value determines the characteristic length as ry = —-. We used
the term “single-frequency” because the defined structure has a
unique radial spatial frequency. We use spatial spectrum analy-
sis to predict the diffracted light beam distribution. By taking a
2D Fourier transform of y (7, 0), the spatial spectrum of the
light beam amplitude at z = 0 can be obtained as follows:

(ﬂ Po) @8)

Wolp, @) = cd(&,m) + Z (=) cos(ngp) ———
where Eq. (5a) is used. This result shows that the spatlal spec-
trum of the structure includes a point impulse on the origin of
the spectrum domain and a circular line impulse with a radius
of py = L around the spectrum or1g1n

The free- -space transfer function is given by [18]

H = H, exp[-indz(&* + n*)] = H, exp(-inizp?), (9)

where H = exp(ikz). In the rest of the paper, H is ignored
for convenience. Multiplying H to @, (p, @), the spatial spec-
trum of the light beam after a propagation distance z from the
structure is obtained by
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7.0 0) = B(E, n)+e*‘“Zf’oZr (i7" cos(g) 2L=20) ”0)

(1 0)

where we used the Dirac delta function’s properties. By taking
an inverse Fourier transform from y,(p, @), the near-field
diffraction amplitude is calculated as

v.(r.0) = c + e N1 ), Qaper) cos(n), (1)
n=0

where z, = W 2 = 2; can be considered as the structure’s Talbot
distance. Comparmg Egs. (7) and (11) we see that at distances
equal to the integer multiples of z,, the diffracted amplitude

fully recovers its initial shape.
As a simple case of single-frequency APBBSs, here a sinus-
oidal single-frequency APBBS is introduced by the following

transmission function:

t(r,0) = [1 + m[,,,( - > cos(m9)1| (12)

where a,, = 1/ max{/,,(x)} is the inverse of the absolute maxi-
mum value of mth order Bessel function. Choosing this value
for a,, maximizes the contrast of the transmittance. In Fig. 1(a),
the transmittance of a sinusoidal single-frequency APBBS is
illustrated. Comparing Egs. (12) and (7), we see that ¢ =%
and #,_,, =% and other coefficients vanish, say z,.,, = 0.
Using these coefficients in Eq. (11), the near-field diffrac-
tion pattern of a sinusoidal single-frequency APBBS can be
obtained.

In Fig. 2, theoretically predicted and experimentally re-
corded diffraction patterns from two sinusoidal single-
frequency APBBSs with 72 = 15 and having two different val-
uesof 7y = 0.5 mm and 7, = 1 mm are illustrated. Patterns of
the first and third rows are produced theoretically, and patterns
of the second and forth rows are recorded experimentally. To
record the experimental patterns, a collimated wavefront of the
second harmonic of an Nd:YAG diode-pumped laser beam
with a wavelength of A =532 nm is propagated through
the structure. The diffracted patterns at different propagation
distances from the structure are recorded by a camera (NIKON
D7200). In order to have high-resolution diffraction patterns,
we remove the imaging lens of the camera, then we record the
diffraction patterns directly over the active area of the camera
without any magnification in size. The active image area of the
camera is 23.5 mm x 15.6 mm. The structure and camera are

Fig. 1. Transmittance of (a) a sinusoidal and (b) a binary-like
single-frequency APBBS with m = 5 and ;) = 1 mm.
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Fig.2. Calculated (first and third rows) and experimentally recorded
(second and fourth rows) intensity diffraction patterns at different
propagation distances from sinusoidal single-frequency APBBSs with
m = 15 and having different values of 7, = 0.5 mm and 7y = 1 mm
(see Visualization 1).

installed in the setup in which their planes are perpendicular to
the propagation direction. The structures are constructed by a
lithography method on transparent plates with a spatial reso-
lution of 300 dpi. The diameter of the constructed structures
is 40 mm. In the experiments, they are fully illuminated by a
uniform laser beam. A square area of the recorded patterns are
grabbed and illustrated in the figures.

As is apparent in Fig. 2, at z = z,, the resulting patterns are
self-images, and at z = %, we have self-images with a 7 phase
shift with respect to the corresponding patterns at z = 0. The
central bright spots form a petal-like pattern over the self-
imaging planes. At quarter-Talbot plane z = %, the number
of bright spots over the central loops is twice of the number
of spots of the initial patterns at z = 0. Meanwhile, the contrast
of the resulting quarter-Talbot images is minimum (see
Visualization 1). These effects are fully consistent with self-
imaging at the quarter-Talbot planes of the conventional
Talbot effect [20,21]. Although the intensity patterns at
z = 0 are nonseparable (in the polar coordinates), at the quar-
ter-Talbot plane, the resulting pattern is separable after sub-
tracting the background term. A similar effect was observed
and investigated for the 2D orthogonal nonseparable periodic
structures in Ref. [10]. The resulting 2D array of light spots
over the self-image planes can be used for multi-trapping.

Now we consider a bit complicated structure that we will
call binary-like single-frequency APBBS. Before defining the
structure, we recall transmittance of a radial grating with a
binary profile [12]:

o0

t(0) = %{1 + sign[cos(m0)]} = % {1 + qu cos(qm@)] ,
q=1

(13)

where “sign” indicates the sign function that extracts the sign of
a real number, m is the gratings spokes number, and
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5= ;—” sin(%). Using the Fourier expansion form of the
transmittance in Eq. (13), we construct a binary-like single-

frequency APBBS as follows:

t(r,0) = % {1 + a,, qu]qm (i—?) cos(qm@)] , (14)
q=1

where by setting a,, =1/ max{zgilsq] qm(zr—’(’)’) cos(gmb)},
the contrast of the transmittance can be maximized.

Comparing Eqs. (14) and (7), we see that ¢ = 1, ¢ a4,

n=qm - 2
= 0. Using these coeffi-

and other coefficients vanish 7,,,,

cients in Eq. (11), the near-field diffraction from sinusoidal
APBBS can be obtained.

In Fig. 1(b), the transmittance of a binary-like single-fre-
quency APBBS is illustrated. In Fig. 3, theoretically predicted
and experimentally recorded diffraction patterns from two
binary-like single-frequency APBBSs with 7, = 1 mm and
having two different 72 = 3 and m = 10 are illustrated.

Almost all the mentioned effects for Fig. 2 here again are
apparent in Fig. 3 (see also Visualization 2).

At the last stage of the work, here, the theory of near-field
diffraction from multi-frequency APBBSs is presented. We de-
fine a multi-frequency APBBS with the following transmission
function:

t(r,0) =ty + Z Z t1)n (271\/27—;:) cos(nd), (15)

/=1 n=0

where 7 is a characteristic length, and #,,, are arbitrary coeffi-
cients. In the passing of a coherent plane wave through this
grating, the complex amplitude immediately after the grating
is given by

r 5 0 -
x(mm) x(mm) x(mm) x(mm)

Fig.3. Calculated (first and third rows) and experimentally recorded
(second and fourth rows) intensity diffraction patterns at different
propagation distances from binary-like single-frequency APBBSs with
ro =1 mm and having two different m =3 and m =10 (see
Visualization 2).
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wol(r,0) = too + Z Z t1,) ,(27p,7) cos(n), (16)

/=1 n=0

where p; = +/Ipy. The spatial spectrum of this amplitude
distribution is obtained by taking a 2D Fourier transform of

wo(r, 0) as

Fo(p, @) = tood(Em) + Y Y 11,(=i)" cos(np)

/=1 n=0

o(p - py)
2zp;

(17)

This result shows that the spatial spectrum of the structure in-
cludes a point impulse on the origin of the spectrum domain
and a set of concentric zone-plate-like circular-line impulses
with radii of p; = V/Ip, around the spectrum  origin. Since
the spectrum of the structure includes a set of radial spatial
frequencies, we use the term “multi-frequency.” The spatial
spectrum of the light beam at a distance z from the structure
is obtained by multiplying H to wy(p, ¢):

(@) = t000(&,1m)

e _indzpt [ An 5(/)_:01)
+ [z: Z; tiue L (=) COS(”(P)TPZ-
=1 n=

(18)

Taking an inverse Fourier transform from w,(p,¢), the
near-field diffraction amplitude is calculated as

v(n0) = tog + Y > e Diy,), Qapr) cos(nt), (19)
/=1 n=0
,1,%2 = zﬂﬁ can be considered as the structure’s Talbot
0
distance. Comparing Egs. (16) and (19), we see that at distan-
ces equal to integer multiples of z,, the diffracted amplitude
fully recovers its initial shape. As an objective example, we
define transmittance of a binary-like multi-frequency APBBS
as follows:

where z, =

o0

t(r,0) = % [1 + aZilj]qm(Zﬂpp’) cos(gml) |, (20)

/=1 q:l

“

where @ is a constant maximizing the contrast. Here, two
different types of binary-like multi-frequency APBBSs are
considered; in the first type, / takes natural numbers, say
/=1,2,3,..., and in the second type, / takes odd numbers,
say / =1,3,5,.... The intensity patterns immediately after
these structures and corresponding near-field diffraction pat-
terns at different propagation distances are shown in Fig. 4.
As is seen for the first type, the half-Talbot image has consid-
erable difference, with the initial pattern especially at the center
of pattern, but for the second type, these images are the same,
only with a 7 phase shift (see also Visualization 3 and
Visualization 4).

In summary, in this Letter, self-imaging in the polar coor-
dinates for the APBBSs was investigated. Single- and multi-
frequency APBBSs were defined, and the Talbot effect for these
structures was formulated. The theory of near-field diffraction
from sinusoidal and binary-like single-frequency APBBSs was
presented and the results verified with the experiments. The
produced arrays of intensity spots in the diffraction of plane
waves from APBBSs may find applications in multi-trapping.
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Fig.4. Calculated (first and third rows) and experimentally recorded
(second and fourth rows) near-field diffraction patterns at different
propagation distances for the first type (first and second rows) and
second type (third and forth rows) binary-like multi-frequency
APBBSs with 7y = 1 mm and m = 5 (see also Visualization 3 and
Visualization 4).
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