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A B S T R A C T   

We show theoretically and numerically that an n-th order vector light field containing the central V-point sin-
gularity of indefinite linear polarization with polarization singularity index n, with a ’flower’ 2(n – 1)-petal 
polarization pattern centered on it, produces an intensity pattern with 2(n – 1) local maxima at the tight 
focus. Meanwhile, a vector light field with polarization singularity index –n, leading to a ’web’ of polarization 
singularities composed of 2(n + 1) cells, is tightly focused into an intensity pattern with 2(n + 1) intensity 
maxima. At the intensity nulls at the focus, either 2(n – 1) or 2(n + 1) V-points with alternating + 1 or –1 indices 
are produced. In addition, we study more general vector fields of the order (n, m) and analytically derive their 
Poincare-Hopf indices for many values of n and m. Application areas of such light fields with polarization sin-
gularities are laser information technologies, laser material processing, microscopy and optical trapping.   

1. Introduction 

In recent years, high-order vector light fields, whose linear polari-
zation vector varies across the beam cross-section, have been at the focus 
of research [1–6]. Such beams can be produced with a variety of tech-
niques, including components with optical metasurfaces [7]. The vector 
beams feature a robust intensity profile on propagation through turbu-
lence [8] and polarization singularity points [9–11] that, in many re-
spects, are similar to phase singularity points of vortex fields [12]. 
Polarization singularity points (V-points) are intensity nulls in a vector 
field where the linear polarization vector is indefinite. The V-points are 
characterized [10] by a Poincare-Hopf index denoted by η, which equals 
the number of integer phase steps by 2π when making a full circle 
around the V-point. The phase is understood as the argument of a 
complex field composed of transverse E-field components, Ex + iEy. This 
definition is similar to a relationship utilized in Ref. [12] to calculate the 
topological charge (TC) of a scalar vortex field with complex amplitude 
E(x, y). V-points can also be characterized using a Stokes index σ, which 
is defined through the Poincare-Hopf index η as σ = 2η and also equals 
the number of integer phase steps by 2π of a complex Stokes field when 
making a full circle around the V-point. With the unit Stokes vector S =
(S1, S2, S3) [13] having three components, the complex Stokes field is 
composed of the first two components: Sc = S1 + iS2. The phase of the 
complex Stokes field is the argument of a complex number Sc. 

In this work, we derive the Poincare-Hopf and Stokes indices η and σ 
for nth-order cylindrical vector beams. We show that in the source plane 
of the beams (where the on-axis field component is zero), fields of linear 
polarization vectors are formed centered at the V-points, which look like 
a ’flower’ or a ’web’, with the number of petals depending on the vector- 
field order n. Using Richards-Wolf formulae, we derive expressions for E- 
vector components at the tight focus for three types of vector fields, 
namely, for nth-order radial polarization (n is positive), –nth-order radial 
polarization (–n is negative), and nth-order azimuthal polarization. 
Relying on the expressions derived for the complex E-field amplitudes, 
we deduce expressions for transverse intensity profiles of the fields of 
interest. Based on the expressions derived, we obtain a major finding of 
this work, showing that the number of petals of the ’polarization flower’ 
of the initial vector field equals the number of local intensity maxima at 
the focal plane. We also show that a V-point of an nth-order vector field is 
’disintegrated’ at the tight focus into several first-order points with no 
petals around them. 

2. Vector field polarization index in the source plane 

Let us analyze an nth-order azimuthally polarized source field whose 
Jones vector takes the form [14,15]: 
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En(φ) =
(
− sinnφ
cosnφ

)

, (1)  

where (r, φ) are the polar coordinates at the source plane. At the field 
center (at r = 0), there is a singular V-point, where the linear polariza-
tion vector is indefinite. According to Ref. [10], field (1) can be char-
acterized by a singularity index similar to the TC of scalar optical 
vortices. V-points are described using a Poincare-Hopf index η, which 
can be calculated for field (1) similar to the TC of a complex field 

Ec,n(φ) = Ex + iEy = − sinnφ + icosnφ = iexp(inφ) (2) 

The index of field (1) and a V-point equal TC of field (2): η = n. On the 
other hand, vector field (1) can be characterized using Stokes parame-
ters S = (S1, S2, S3) [13], where 

S1 =
|Ex |

2 − |Ey|
2

|Ex |
2+|Ey|

2,

S2 =
2Re

(
E*

x Ey
)

|Ex|
2
+
⃒
⃒Ey

⃒
⃒2
,

S3 =
2Im

(
E*

x Ey
)

|Ex|
2
+
⃒
⃒Ey

⃒
⃒2,

(3)  

with Re and Im stand for the real and imaginary parts of a number. From 
(3), the Stokes vector is seen to be of unit length:S2

1 + S2
2 + S2

3 = 1. For 
the field (1), the Stokes parameters from (3) are given by 

S1 = − cos(2nφ), S2 = − sin(2nφ), S3 = 0. (4) 

Since S3 = 0 in Eq. (4), we can infer that the field (1) is linearly 
polarized at any point, excepting the V-point, where polarization is in-
definite. The complex Stokes field for the vector (4) takes the form: 

Sc = S1 + iS2 = − cos(2nφ) − isin(2nφ) = − exp(i2nφ) (5) 

The Stokes index for the field (1) equals TC of the field (5): σ = 2η =
2n. Thus, the Stokes index is twice as large as the Poincare-Hopf index. 

For a radially polarized nth-order field with the Jones vector 

E1,n(φ) =
(

cosnφ
sinnφ

)

(6)  

the Poincare-Hopf index of the central V-point (r = 0) also equals η = n. 
The V-point singularity index has the opposite sign (η = –n) for a vector 
field 

E2,n(φ) =
(

cosnφ
− sinnφ

)

(7)  

3. Number of local intensity maxima at the focus of a vector field 

Interestingly, vector field (6) produces a ’flower’-shaped pattern of 
linear polarization vectors composed of 2(n – 1) petals. Actually, a petal 
is inscribed between the vector found at an angle φ = 0 and the vector 
rotated by an angle φ = π + φ0. From the first to the second angle, the 
phase of the field (6) changes by nφ0 rad. Equating π + φ0 = nφ0, we find 
the angle for a single petal to be φ0 = π/(n – 1). In total, there are N 
petals: 2π = Nφ0. Hence, we find that N = 2(n – 1). A similar reasoning 
suggests that a polarization ’web’ composed of linear polarization vec-
tors around the V-point of field (7) has N = 2(n + 1) cells. 

Next, we demonstrate that a ’flower’ of linear polarization vectors 
composed of 2(n – 1) petals formed by the field (6) in the source plane is 
transformed at the tight focus into a ’flower’-shaped intensity pattern 
with 2(n – 1) local maxima. 

Actually, using Richards-Wolf formulae [16], which describe the 
electromagnetic field components in the tight focus neighborhood, the 
E-field components can be derived in the form: 

Ex = − in+1( I0,ncosnφ + I2,n− 2cos(n − 2)φ
)
,

Ey = − in+1( I0,nsinnφ − I2,n− 2sin(n − 2)φ
)
,

Ez = 2inI1,n− 1sin(n − 1)φ,
(8)  

where 

Iν,μ =

(
πf
λ

)∫ θ0

0
sinν+1

(
θ
2

)

cos3− ν
(

θ
2

)

×cos1/2(θ)A(θ)eikzcosθJμ(x)dθ,

(9)  

where λ is the wavelength of light, f is the focal length of an aplanatic 
optical system, x  = krsinθ, Jμ(x) is the first-kind Bessel function, and NA 
= sin θ0 is the numerical aperture. The initial amplitude function A(θ) 
(herein assumed to be real) may be either constant (a plane wave) or in 
the form of a Gaussian beam 

A(θ) = exp
(
− γ2sin2θ

sin2θ0

)

, (10)  

where γ is constant. The transverse intensity (without regard for the 
longitudinal component of the field (8)) is given by 

It = |Ex|
2
+
⃒
⃒Ey

⃒
⃒2 = I2

0,n + I2
2,n− 2 + 2I0,nI2,n− 2cos(2(n − 1)φ) (11) 

From (11), the transverse intensity profile is seen to have 2(n – 1) 
local intensity maxima centered on the optical axis, each being located 
on a ray φ = 2πp/(2n – 2), p = 1, 2, 3, …, 2(n – 1). Now we will determine 
an index of the V-point at the focus of the vector field (8). For this 
purpose, an equivalent complex field and its amplitude can be expressed 
as 

Ec,n =
(
I0,ncosnφ + I2,n− 2cos(n − 2)φ

)

+i
(
I0,nsinnφ − I2,n− 2sin(n − 2)φ

)

= I0,nexp(inφ) + I2,n− 2exp( − i(n − 2)φ)
(12) 

In the general case, the index of the field (8) is undefined, because 
while at certain radii r coefficients in one exponential function can be 
larger than those in another one, the situation may be opposite at other 
radii. In the complex field of Eq. (12), TC depends on asymptotic 
properties of integrals (9). For instance, putting A(θ) = δ(θ − θ0), the 
integrals in (9) are replaced by Bessel functions, so that (12) is rear-
ranged to 

Ec,n = AJn(αr)exp(inφ)+BJn− 2(αr)exp( − i(n − 2)φ), (13)  

with α = kr sin θ0 and 

A =

(
πf
λ

)

sin
(

θ0

2

)

cos3
(

θ0

2

)

cos1/2θ0,

B =

(
πf
λ

)

sin3
(

θ0

2

)

cos
(

θ0

2

)

cos1/2θ0.

While from (13), the index is still seen to be undefined, near the optical 
axis the amplitude of a lower-order Bessel function is larger than that of 
a higher-order Bessel function, which means that, similar to the TC of a 
superposition of two optical vortices [17], the near-axis index equals η =
–(n – 2). In a particular case of n = 1 (conventional radial polarization) 
Eq. (12) suggests that 

Ec,1 = (I0,1 − I2,1)exp(iφ) (14) 

In this case, the V-point index is unit (η = 1) and, considering that n 
= 1, the source field index remains the same at the focus. This clearly 
follows from the fact that a singular point with unit index is unable to 
disintegrate into a number of V-points with smaller indices. In a similar 
way, a scalar optical vortex with TC = 1 remains robust following sto-
chastic amplitude and phase distortions. 

For an nth-order azimuthally polarized vector source field of Eq. (1), 
2(n – 1) local intensity maxima will also occur at the focus, though being 
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located on other rays. Hence, a focal ’flower’ composed of local intensity 
maxima will be rotated by an angle of π/(2n – 2). Using the angle 
magnitude, it becomes possible to distinguish nth-order radial polariza-
tion from nth-order azimuthal one. Meanwhile, the number of ’flower’s 
petals’ enables a cylindrical polarization order to be determined. Actu-
ally, for a source field (1), E-vector components in the focal plane take a 
form similar to Eq. (8): 

Ex = in+1( I0,nsinnφ + I2,n− 2sin(n − 2)φ
)
,

Ey = in+1( − I0,ncosnφ + I2,n− 2cos(n − 2)φ
)
,

Ez = − 2inI1,n− 1sin(n − 1)φ.
(15) 

For the source field (1), the transverse intensity distribution in the 
focus is 

It = |Ex|
2
+
⃒
⃒Ey

⃒
⃒2
= I2

0,n + I2
2,n− 2 − 2I0,nI2,n− 2cos(2(n − 1)φ) (16) 

From (16), 2(n – 1) local maxima are seen to reside on a circle 
centered at the optical axis and on the rays outgoing from the center at 
angles φ = (π + 2πp)/(2n – 2), p = 0, 1, 2, …, 2n – 3. To find indices of V- 
points at the focal spot of the vector field (1), we can express an 
equivalent complex field with the amplitude: 

Ec,n =
(
I0,nsinnφ + I2,n− 2sin(n − 2)φ

)

+i
(
− I0,ncosnφ + I2,n− 2cos(n − 2)φ

)

= − iI0,nexp(inφ) + iI2,n− 2exp( − i(n − 2)φ)
(17) 

In the general case, the index of the field (17) is undefined, because 
while at certain radii r coefficients in one exponential function can be 
larger than those in another one, the situation may be opposite at other 
radii. However, at n = 1 (ordinary azimuthal polarization), from Eq. (17) 
it follows that 

Ec,1 = − i(I2,1 + I0,1)exp(iφ) (18) 

In this case, the V-point index is unit (η = 1), meaning that the index 
of initial field (1) remains unchanged at the focus. 

A vector ’web’ of source field (7) with 2(n + 1) cells, centered on the 
V-point polarization singularity is transformed at the focus into an in-
tensity pattern with 2(n + 1) local maxima. Actually, for the source field 
in (7), projections of the E-vector are given by (n > 0) 

Ex = in− 1( I0,nsinnφ + I2,n+2sin(n + 2)φ
)
,

Ey = in− 1( I0,ncosnφ − I2,n+2cos(n + 2)φ
)
,

Ez = − 2inI1,n+1sin(n + 1)φ.
(19) 

For the field (19), the transverse intensity distribution at the focus is 
given by 

It = |Ex|
2
+
⃒
⃒Ey

⃒
⃒2
= I2

0,n + I2
2,n+2 − 2I0,nI2,n+2cos(2(n + 1)φ) (20) 

From (20), the intensity distribution is seen to have 2(n + 1) local 
intensity maxima at the focus on an axis-centered circle of a certain 
radius. Hence, the vector ’web’ in the source field of Eq. (7) can be 
identified based on the number of petals of an nth-order vector ’flower’. 

Putting n = –1 in Eq. (7) for the source field, we may infer from (14) 
that the V-point index changes sign at the focus, because based on Eq. 
(19) for the E-vectors at the focus, we find that 

Ec,1 = − i(I2,1 + I0,1)exp(iφ) (21) 

Aiming to determine the V-point index at the focus of the vector field 
(7) and using Eq. (19), we form an equivalent complex field with the 
amplitude: 

Ec,n =
(
I0,nsinnφ + I2,n+2sin(n + 2)φ

)

+i
(
I0,ncosnφ − I2,n+2cos(n + 2)φ

)

= iI0,nexp( − inφ) − iI2,n+2exp(i(n + 2)φ)
(22) 

Just like in Eq. (17), the index of field (19) is undefined, but like in 
Eq. (13), it can be asserted that at the focus the near-axis V-point index is 
equal to a lesser number of the Bessel function, i.e. η = –n. That is, given 
the source field of Eq. (7), the near-axis V-point index at the focus is the 
same as in the source plane. 

4. Polarization singularity index for a generalized vector field 

Obviously, the above reasoning cannot be automatically applied to a 
generalized vector field as it has different orders on the different axes. 
For such a field, the Jones vector is [10] 

E2,n(φ) =
(

cosnφ
sinmφ

)

(23) 

Although the field (23) may also be said to have a central V-point, its 
index can be defined analytically only in some cases (see Appendix A). 
Actually, the complex field equivalent to the field (23) is given by 

Ec,n(φ) = Ex + iEy = cosnφ + isinmφ. (24) 

In the topic-related work [10], it was not specified in which way the 
index of such a field could be determined if n ∕= m. In this work, we 
propose that the V-point index of the vector field (23) should be calcu-
lated in a similar way to calculating the TC of scalar optical vortices 
using the Berry’s formula [12]: 

TC =
1

2π lim
r→∞

Im
∫ 2π

0
dφ

∂E(r,φ)/∂φ
E(r,φ)

. (25) 

Then, according to (25), the Poincare-Hopf index for vector field (24) 
is given by 

η =
1

2π lim
r→∞

Im
∫2π

0

dφ
− nsinnφ + imcosmφ

cosnφ + isinmφ
=

1
2π

∫2π

0

dφ
nsinnφsinmφ + mcosmφcosnφ

cos2nφ + sin2mφ
.

(26) 

From (26), it follows that at m = n, η = n, whereas at m = –n, η = –n. 
However, at n ∕= ±m, the integral in Eq. (26) is not reduced to reference 
integrals. In separate cases, Eq. (26) can be calculated analytically 
(Appendix A), but in other cases it needs to be calculated numerically. 

Table 1 below gives values of η, which were calculated using Eq. (26) 
for vector field (23), with the orders m and n being varied from 0 to + 10 
(for negative m and n, symmetry rules can be used, as is derived in 
Appendix A: η–n,m = ηn,m and ηn,–m = –ηn,m). From Table 1, polarization 
singularity index can be only integer. It is also interesting that at n = 1, 
–1 and any m, the η index is equal to either 1, or 0, or –1. Also, at n = 8, 
–8 and any m, the η index equals either 8, or 0, or –8. The same holds for 
n = 4 and n = 2. 

5. Numerical modeling 

Shown in Fig. 1 are source vector fields with polarization singularity 
(V-point) at the center for the nth-order vector field (6): (a) 3, (b) 4, (c) 

Table 1 
Poincare-Hopf index η of vector field (23): n shown on the horizontal lines and m 
– on the vertical.  

m n  
0 1 2 3 4 5 6 7 8 9 10 

0 0 0 0 0 0 0 0 0 0 0 0 
1 0 1 0 1 0 1 0 1 0 1 0 
2 0 0 2 0 0 0 2 0 0 0 2 
3 0 –1 0 3 0 –1 0 –1 0 3 0 
4 0 0 0 0 4 0 0 0 0 0 0 
5 0 1 0 1 0 5 0 1 0 1 0 
6 0 0 –2 0 0 0 6 0 0 0 –2 
7 0 –1 0 –1 0 –1 0 7 0 –1 0 
8 0 0 0 0 0 0 0 0 8 0 0 
9 0 1 0 –3 0 1 0 1 0 9 0 
10 0 0 2 0 0 0 2 0 0 0 10  
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Fig. 1. Vector field (6) (arrows mark linear polarization vectors at particular 
points), whose order n coincides with the index of the V-point polarization 
singularity (Poincare-Hopf index η) at the field center and equals: (a) 3, (b) 4, 
(c) –3, and (d) –4. 

Fig. 2. Patterns of the (a) total intensity Ix + Iy + Iz and (b) transverse intensity 
components Ix + Iy from the source vector field of Fig. 1(a) at n = 3. 

Fig. 3. Pattern of linear polarization vectors at the focal plane from the source 
vector field in Fig. 1(a) (n = 3). 
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Fig. 4. Patterns of the (a) total intensity Ix + Iy + Iz and (b) transverse intensity 
Ix + Iy component at the focal plane (NA = 0.95) from the source vector field 
with the index n = 4 [Fig. 1(b)]. 

Fig. 5. Pattern of linear polarization vectors for the source vector field of Fig. 1 
(b) with the index n = 4. 

Fig. 6. Patterns of the (a) total intensity Ix + Iy + Iz and (b) transverse intensity 
Ix + Iy component at the focal plane (NA = 0.95) for the source vector field with 
the index n = –3 of Fig. 1(c). 

Fig. 7. Pattern of linear polarization vectors at the focus from the source field 
with the index n = –3 of Fig. 1(c). 
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–3, and (d) –4. In compliance with the theoretical predictions, the vector 
fields in Fig. 1(a,b) are shaped as ’flowers’ with the number of petals 
equal to (a) 2(n – 1) = 4 and (b) 2(n – 1) = 6. Whereas two other vector 
fields in Fig. 1(c,d) produce ’lattice’ patterns with the number of cells 
equal to (c) 2(n + 1) = 8 and (d) 2(n + 1) = 10. 

Source vector fields of type (6) in Fig. 1 are transformed at the focal 
plane into vector fields (8), (15), and (19), which have several points of 
polarization singularities. Shown in Fig. 2 are the total intensity [Fig. 2 
(a)] and the transverse intensity [Fig. 2(b)] for a source vector field with 

Fig. 8. Source vector fields (23) at different n and m.  

Fig. 9. Intensity patterns at the focus of vector beams with (a) n = 2, m = 1 (a 
’butterfly’) and (b) n = 3, m = –7 (a ’dragon mouth’). 

Fig. A1. Calculation of the Poincare-Hopf index. Contours Γ (blue solid curves) 
in the complex plane defined as ζ = cos φ + i (2p + 1) sin φ (0 ≤ φ ≤ 2π) for p =
0 (a), p = 1 (b), p = 2 (c). Red dashed ellipses show the simple contours without 
self-intersections, into which the contour Γ can be split. The cross in the center 
denotes ζ = 0, the only pole of the integrand in (A6). (For interpretation of the 
references to colour in this figure legend, the reader is referred to the web 
version of this article.) 
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the index n = 3 of Fig. 1(a). The numerical modeling of focusing vector 
fields was conducted using Richards-Wolf formulae [16] for wavelength 
532 nm and numerical aperture NA = 0.95. 

In accordance with theoretical predictions [Eq. (11)], there occur 2(n 
– 1) = 4 local maxima of the total and transverse intensities at the focus. 
Due to the longitudinal intensity components, the coordinates of four 
local maxima in Fig. 2(a) are different from those of the transverse in-
tensity in Fig. 2(b). 

Shown in Fig. 3 is a distribution of linear polarization vectors at the 
focus from the source vector field in Fig. 1(a) (n = 3). 

From Fig. 3, four polarization singularity centers are seen to be 
located at the corners of the dark cross of Fig. 2, with an on-axis V-point 
with the index η = –1 located at the center. The indices of the four V- 
points at the corners of the dark cross (Fig. 2) are the same in magnitude 
but of different sign, with two vertical V-points having η = +1, and two 
horizontal V-points η = –1. Hence, the total near-axis index of the vector 
field of Fig. 3 equals that of the central V-point, i. e. η = –1. This 
conclusion agrees well with Eqs. (12) and (13): η = –(n – 2) = –1. 

Fig. 4 depicts numerically simulated patterns for the (a) total in-
tensity and (b) transverse intensity from the source vector field with n =
4 [Fig. 1(b)]. From Fig. 4, the theoretical relation (11) is again seen to be 
corroborated, with 2(n – 1) = 6 local maxima in the intensity pattern 
found symmetrically to the optical axis being observed. 

Fig. 5 shows a pattern of linear polarization vectors at the focus from 
a source vector field with n = 4 [Fig. 1(b)]. From Fig. 5, a set of V-points 
with indices η = +1, –1 are seen to form at the ’vertices of a dark six- 
point star’ of Fig. 4. Equation (12) suggests that an on-axis V-point 
with η = –2 is found at the center. 

Fig. 6 depicts patterns for the total [Fig. 6(a)] and transverse [Fig. 6 
(b)] component of the intensity at the focal plane (NA = 0.95) from the 
source vector field with n = –3 of Fig. 1(c). Fig. 6 shows that in 
compliance with theoretical predictions, there are 2(n + 1) = 8 local 
intensity maxima in the intensity distribution. 

Shown in Fig. 7 is a pattern of linear polarization vectors at the focus 
from the source vector field of Fig. 1(c) at n = –3. From Fig. 7, eight V- 
points are seen to be located on a circle (at the vertices of a ’dark eight- 
point star’), with four of them having the index η = +1 and four having 
the index η = –1. Equation (22) suggests that at the center of the focal 
spot there is a V-point with η = 3. 

Fig. 8 presents patterns of linear polarization vectors for the source 
field of Eq. (23) at different values of (n, m): (a) (2,1), (b) (3,–7), (c) 
(9,–3), and (d) (6,2). Using the Table above, the Poincare-Hopf indices η 
for the said vector fields can be found to be (a) 0, (b) 1, (c) –3, and (d) 2. 
By looking at Fig. 8, indices of the V-points of such complex vector fields 
would be difficult to determine. The pattern for linear polarization 
vectors at the focus would be even more complicated (not presented 
here). Shown in Fig. 9 is an intensity pattern at the focus of an aplanatic 
objective with NA = 0.95 when focusing vector beams with n = 2, m = 1 
[Fig. 9(a)] and n = 3, m = –7 [Fig. 9(b)]. 

Fig. 9 suggests that a source field with η = 0 [Fig. 8(a)] produces 
neither an intensity null nor a V-point at the center of the focal spot 
[Fig. 9(a)], whereas a source vector field with η = 1 [Fig. 9(b)] produces 
at the center an intensity null and a V-point. 

6. Conclusions 

Summing up, we have shown both theoretically and numerically that 
an nth-order source vector field has a central V-point with the Poincare- 

Hopf index η = n and the Stokes index 2n. Such a vector field is ’flower’- 
shaped with 2(n – 1) petals. When tightly focused, this field produces at 
the focus an intensity pattern with 2(n – 1) local maxima located on a 
circle of certain radius, centered on the optical axis. Near those intensity 
maxima, 2(n – 1) local minima are found (intensity nulls, polarization 
singularity points), where V-point singularities with alternating indices 
+ 1 and –1 (the total index being zero) are located. An intensity null, or a 
V-point with the index –(n – 2), has also been shown to occur at the 
center of the focus. 

It has also been shown that an –nth-order source vector field has at 
the center a V-point with the index –n. Such a vector field is in the form 
of a ’web’ with 2(n + 1) cells. At the tight focus, this field produces an 
intensity pattern with 2(n + 1) local maxima located on a circle of 
certain radius centered on the optical axis. Near those intensity maxima, 
2(n + 1) local minima are found (intensity nulls, polarization singularity 
points), where V-points with alternating indices + 1 and –1 (the total 
index being zero) are located. An intensity null, or a V-point with the 
index –n, has also been shown to occur at the center of the focus. For an 
(n, m)-order vector field, indices of V-points (see the Table) have been 
numerically calculated for the numbers varying from –10 to + 10. For a 
number of cases, indices of a generalized vector field have been derived 
analytically (Appendix A). 

Such vector fields with V-point singularities can be generated 
experimentally by using either q-plates, i.e. specially transversely 
patterned liquid crystal cells inducing an integer or semi-integer topo-
logical charge [18,19], or, for higher Poincare-Hopf indices, by spatial 
light modulators: either by one, with double modulation technique [20], 
or by two [21]. 

Application areas of such light fields with polarization singularities 
are laser information technologies [22], laser material processing [23], 
microscopy [24] and particle manipulation or optical trapping [25]. 
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Appendix A. . Calculating polarization singularity index of a generalized vector field 

Below, we deduce some properties of polarization singularity index (26), including properties of parity, symmetry, reciprocity, and multiplicity. 
The parity property is expressed in the fact that for different-parity m and n (i.e. m + n is odd), polarization singularity index (26) equals zero. 

Actually, the first integral in (26) can be broken down in two (with the range of integration in the second integral shifted from [π, 2π] to [0, π]): 
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ηn,m =
1

2π Im{

∫π

0

− nsinnφ + imcosmφ
cosnφ + isinmφ

dφ

+

∫π

0

− n( − 1)nsinnφ + im( − 1)mcosmφ
( − 1)ncosnφ + i( − 1)msinmφ

dφ}

(A1) 

Multiplying the numerator and denominator of the first integral by (–1)n and taking into account that (–1)m+n = –1, we get a sum of two complex 
conjugated numbers whose imaginary part equals zero. 

Thus, we obtain a symmetry property of the Poincare-Hopf index for vector field (23). In this way, it stands to reason that when n changes sign, the 
first integral in (26) does not change: 

η− n,m =
1

2πIm
∫ 2π

0
dφ

− ( − n)sin( − nφ) + imcosmφ
cos( − nφ) + isinmφ

= ηn,m. (A2) 

On the contrary, when m changes sign, the integrand becomes complex conjugated and, hence, the imaginary part changes sign: 

ηn,− m = − ηn,m. (A3) 

Shifting the range of integration by π/2, we get the following relationships between the indices: 

ηn,m =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
2πIm

∫ 2π

0
dφ

− n( − 1)
n
2sinnφ + im( − 1)

m
2 cosmφ

( − 1)
n
2cosnφ + i( − 1)

m
2 sinmφ

,

if n,m are even,

1
2πIm

∫ 2π

0
dφ

− n( − 1)
n− 1

2 cosnφ + im( − 1)
m+1

2 sinmφ

( − 1)
n+1

2 sinnφ + i( − 1)
m− 1

2 cosmφ
,

if n,m are odd,

=

⎧
⎨

⎩

( − 1)(m− n)/2ηn,m, if n,m are even,

( − 1)(m− n)/2ηm,n, if n,m are odd.

(A4) 

This can be termed as a reciprocity property because it enables the indices to be swapped if they are odd. 
From (A4), it also follows that if n and m are even, but (m – n)/2 is odd, then η = 0. 
If the orders m and n have a common divisor, i.e. m = pμ and n = pν, then, performing a change of variables φ = θ/p in (26), we obtain a multiplicity 

property: 

ηpν,pμ = p
1

2π Im
∫2πp

0

− νsinνθ + iμcosμθ
cosνθ + isinμθ

dθ
p

= pην,μ. (A5) 

For instance, at m = 2n, polarization singularity index equals zero thanks to the multiplicity and parity properties: ηn,2n = nη1,2 = 0. 
In a simple case, we determine the index η1,2p+1 analytically through the use of residues. If we denote ζ = cos φ + i (2p + 1) sin φ, the integral (26) 

can be written as (at n = 1) 

η =
1

2π Im
∮

Γ

dζ
ζ
, (A6)  

where Γ is the oriented closed contour in the complex plane drawn by the variable ζ, when 0 ≤ φ ≤ 2π. Fig. A1 illustrates this contour for p = 0, 1, 2. 
If p = 0, this contour is a simple unit-radius circle. Otherwise, Γ has self-intersections and the integral over Γ can be replaced by a sum of the 

integrals over several simple contours without the self-intersections [red dashed contours in Fig. A1(b,c)]. The only pole of the integrand in (A6) is ζ =
0. If p = 0, this pole is within the unit-radius circle and, according to the residues theorem, applied to the integral (A6), η11 = 1. For p > 0, only one 
simple contour contains the pole [Fig. A1(b,c)]. Thus, integration over the other simple contours yields 0. If p = 1 (and at other odd p), the pole is 
bypassed clockwise and, therefore, the integration yields η13 = –1. Similarly, if p = 2 (and at other even p), the pole is bypassed counterclockwise and, 
therefore, the integration yields η15 = +1. Thus, we can write a general rule for the Poincare-Hopf index ηnm at n = 1 and odd m: 

η1m = ( − 1)(m− 1)/2 (A7)  

or, using the reciprocity property: 

ηn,1 = 1. (A8) 

All the properties of index (26) for field (23) derived herein can be verified using the Table. 
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