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1. August 7 Lecture

Random Simplicial Complexes

Foundational case: Random Graphs (1-dimensional complexes)

Definition 1. (Erdos,Renyi [9]) G1(n, p) is the random graph with vertices [n] = {1, 2, . . . , n} and
edges chosen independently each with probability p.

Definition 2. (Linial, Meshulam, [21]) Gd(n, p) is the random d-dimensionl simplicial complex
with vertices [n] and all

(

n
k+1

)

k-dimensinal faces if k < d and d-faces chosen independently each
with probability p.

Example. Fix H = ([5], {{1, 2}, {1, 3}, {2, 3}, {3, 4}, {4, 5}, {5, 2}}) (repeatedly drawn in lecture).

(1) ProbG∈G1(5,
2
3
)(G = H) = (23)

6(13 )
4 ∼ .001 (six edges must be there, 4 must be not there)

(2) ProbG∈G1(5,
2
3
)(G ⊇ H) = (23)

6 ∼ .088 (six edges must be there and no restriction on the

rest)
(3) ProbG∈G1(5,

2
3
)(G ∼ H) = 5!

2 (
2
3 )

6(13)
4 ∼ .065 (all vertex labelings divided by the symmetries)

(4) ProbG∈G1(5,
2
3
)(G← H) = sum of seven terms for the various isomorphism types ∼ .186

Definition 3. NH(G) = (the number of copies of H in G)

(5) EG∈G1(5,
2
3
)(NH(G)) = 5!

2 (
2
3 )

6 ∼ 5.267 (linearity of expectation)

(6) EG∈G1(n,n−α)(NH(G)) = 1
2n(n − 1) . . . (n − 4)n−6α = 1

2n
5−6α(1 − o(1)) (typical choice of

probability)

There are three basic types of questions to consider here:
A) Occasionally there are surprising structures occuring with positive probability leading to non-
constructive existence proofs. Examples of this are rare, but particularly compelling.

Theorem 4. (Erdos, Renyi [9]) For every g, χ there are graphs G with girth(G) ≥ g and
chromtic number(G) ≥ χ.

Here the girth of a graph is the length of the shortest cycle. This means that to distances
less than g

2 the graph looks like a tree but globally there are many extra edges forcing up the
chromatic number. The model above was used in this proof, but examples do not occur with
positive probability. Instead graphs which occur with positive probability can be easily modified
to get examples for the theorem.

Theorem 5. (Gromov [11]) There are finitely generated groups Γ with no coarse embedding in ℓ2.
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2 RANDOM SIMPLICIAL COMPLEXES: NOTES

This is a celebrated example of such a theorem but will not be mentioned again.

B) Phase transitions. How does a typical complex in Gd(n, p(n, α)) look for large n and how
does this change as α varies? Typical examples are p(n, α) = n−α or p(n, α) = α

n
. The three basic

steps in understanding such a transition are often:

(1) local density thresholds
(2) geometric or topological density implications giving local structure
(3) local to global implications giving global structure

Some examples of theorems for each of these steps:

(1)

Definition 6. If H is a simplicial complex write fdX for the number of d-faces, H[S] for

the restriction mo a subset of the vertices and αdH = maxS⊂V H( |S|
fdH[S]). Call H lumpless if

this ratio is achieved only or the entire complex so that αd(H) = f0H
fdH

> |S|
fdH[S] if S 6= V H.

Definition 7. Say that a property holds asymptotically almost surely (a.a.s.) for G(n, p(n, α))
if the property holds with probability approaching 1 as n increases. Call α = a a threshold
for a property if it holds a.a.s. for α > a and fails a.a.s. for α < a.

Theorem 8. If H is a lumpless d-complex then α = αdH is a threshold for Gd(n, n
−α) to

contain a copy of H.

In fact the transition to containing copies of a lumpless H is well understood, with a
Poisson distribution with finite expected number if p = cn−α(H).

(2)

Theorem 9. ([4]) If H is a connected 2-dimensional simplicial complex and every S has
α2H[S] > 1

2 then H has the homotopy type of a wedge of 2-spheres, real projective planes
and circles.

The proof I know for this is surprisingly tricky. It would likely be clarifying to have
an easier one. An example of a simplicial 2-complex with homotopy type a 2-sphere, but
not containing one up to homeomorphism has 6 vertices, all 15 edges and the 11 triangles
{{1, 2, 3}, {1, 2, 4}, {1, 2, 5}, {1, 3, 6}, {1, 5, 6}, {2, 3, 5}, {2, 3, 6}, {2, 4, 6}, {3, 4, 5}, {4, 5, 6}, {1, 2, 3}}.
The last 10 triangles form the projective plane with double cover the icosahedron.

(3)

Theorem 10. ([4, 13, 23, 24, 21]) α = 1 is a threshold for Gd(n, n
−α) to have vanishing

integer d−1 homology and if d = 2, α = 1
2 is a threshold for it to have vanishing fundamental

group.

C) Extreme objects. Instead of choosing complexes one at a time one can also consider sequences
of complexes obtained by starting with no d-faces and uniformly choosing one to add to the previous
complex until all of them have been chosen. One example of an extreme event along this sequence
is the largest p-torsion that one sees in the homology.

Definition 11. If Γ is a finite Abelian p-group define

Pn(Γ) = Prob
σ:[( n

d+1)]→( [n]
d+1) a bijection(max

r
{|p-torsion(Hd−1(Xσ([r])))|} = |Γ|

and for some r, p-torsion(Hd−1(Xσ([r]))) ∼= Γ).

Here Xσ([r]) is the complex with vertices [n], all faces of dimension less than d and precisely the
d-faces σ(i) with i ≤ r. Define P (Γ) = limn Pn→∞(Γ).
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Conjecture 1. (Kahle, Lutz, Newman, Parsons[17])

(1) For every p there is cp with P (Γ) =
cp

|Aut(Γ)| (a Cohen-Lenstra [7] distribution).

(2) For any function p(n) with X ∈ Gd(n, p(n)) one has H·(X) is a.a.s. torsion-free.

For instance since |Aut(C3) = 2 and |Aut(C9) = 6 the first conjecture predicts that P (C3) =
3P (C9) and this ratio is in good agreement with simulations [17]. The second conjecture suggests
that only a few of the complexes in a typical sequence have torsion as seen in the simulation below.
The other thing one sees is that the torsion which does occur is large. There is a heuristic that

suggests it should be roughly of size ecn
d

and occur after roughly ad
(d+1)!n

d faces have been added,

with ad the constant discussed in a later lecture. Here is a sample simulation run from [17] with
d = 2, n = 75 after r triangles have been added Here a2 = 2.455 so ad

(d+1)!n
d = 2302.

r H2 H1

2469 Z4 Z236

2470 Z4 Z235 × C2

2471 Z4 Z234 × C2

2472 Z4 Z233 × C2

2473 Z4 Z232 × C2

2474 Z4 Z231 × C2 × C2

2475 Z4 Z230 × C2 × C79040679454167077902597570

2476 Z5 Z230 × C2

2477 Z5 Z229 × C2

2478 Z6 Z229

Here is an idea of the evolution of X ∈ G2(n, p(n)) as p increases in the limit of large n.
p(n) local structure global structure

no triangles
n−3

isolated triangles
n−2

growing, finite, edge-connected groups collapses to a graph
c
n

finitely many tetrahedra conjectural torsion spike
classes in H2 with large support

c ln(n)
n

growing finite spheres vanishing H1

n− 3
5

growing finite projective planes

n− 1
2

every finite homeomorphism type vanishing π1

The idea of the proof for theorem 6 requires estimating the probability of finding a copy of H
in the random complex X. It is much easier to compute the expected number but it is possible
that the expected number diverges to infinity with n, while the probability of even one occuring
decreases to 0. This is controled for by using a second moment estimate. If A is a random variable

valued in the nonnegative integers and EA and EA2 are finite then E2A
EA2 ≤ Prob(A > 0) ≤ EA. The

second inequality (first moment estimate) is trivial and the first (second moment estimate) is fairly
straightforward. The proof now follows by condisering a counting function random variable NH .
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There are now two things to show. Firstly, if α > α(H) then ENH ∼
1

|Aut(H)|
nvH−αfH approaches

0 since α > α(H) ≥ vH
fH

. Secondly, if α(H) > α then E2NH

EN2
H

approaches 1. This requires a lowwer

bound on the denominator and the approach to this will be considered in the problem session and
the next lecture.
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2. August 8 Lecture

Random Monomial Ideals and Homology of Coarsely Random Simplicial Complexes

2.1. Models. There has not been very much study of the square-free monomial ideals associated to
random simplicial complexes. There has been considerable study of the homology of such complexes
though and Hochster’s formula (see lecture four) for Tor modules shows that these are closely related
but that the homology of all induced subcomplexes is also needed. Induced subcomplexes have not
been as thoroughly studied, but some aspects fit well with what is known. Any particular induced
subcomplex is just drawn from the same type of distribution with the probability rewritten as a
function of the number of vertices in the subcomplex. All subcomplexes of a fixed size are studied
as in the first lecture. These are simply the local structures. What is missing is an analysis of all

subcomplexes of a size which depends on n, such as n
2 or n

1
2 .

Definition 12. If X is a finite simplicial complex write S for the polynomial ring with variables

indexed by the vertices of X and InfX ⊆ S for the non-face ideal which is the square-free monomial
ideal generated by the monomials supported on non-faces of X.

One could also study the facet ideal IFX ⊆ S generated by monomials supported on facet of X,
but I will concentrate on the non-face ideals.

Another well studied model of simplicial complexes to which similar comments apply is obtained
by considering the clique complexes of the Erdos-Renyi model G1, but the analog ∆dGd(n, p(n))
also makes sense and could likely by analyzed similarly.

Definition 13. If X is a finite simplicial complex write ∆d(X) for the subcomplex of the simplex

with vertices V X containing those faces F ⊆ V X for which
(

F
d+1

)

⊆ X.

Thus ∆d(X) contains X and the full (d − 1)-skeleton of the simplex. Call ∆d(X) the d-clique
complex by analogy with the usual clique complex of a graph X, which is ∆1(X).

Note that InfX with X ∈ ∆dGd(n, 1− p) is the same measure on ideals as IFY with Y ∈ Gd(n, p).
Finally there is a newly introduced model for monomial ideals which might have squares for

which many questions remain open.

Definition 14. (De Loera, Petrovic, Silverstein, Stasi, Wilburne [8]) J(n,M, p) is a random mono-
mial ideal in R[x1, . . . , xn] with generators of degree at most M chosen independetly with probability
p.

Example. ProbI∈J(2,2, 1
3
)(I = (x, y2)) = (23 )

2(13 )
212 since the monomials 1 and y must not be

selected to generate I giving (23)
2 and the monomials x and y2 must be selected giving (13 )

2 while

it does not matter whether xy and x2 are selected.

2.2. Homology of Gd(n, p(n)). Quite a bit is known about the vanishing of rational homology for
Gk(n, p(n)) as discussed below and for ∆1G1 as discussed in the next lecture. There has also been
some study of the ranks of these groups. The torsion is poorly understood, but there are some nice
conjectures mentioned in the first lecture.

Theorem 15. (1) (Linial, Meshulam, Wallach [21, 24])For any field F, α = 1 in Gd(n, n
−α)

is a threshold for H̃d−1(·;F) to vanish.
(2) (Babson, Hoffman, Kahle [4]) α = 1 in G2(n, n

−α) is a threshold for π1(X) to vanish.
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The first threshold can be sharpened to c = 0 inGd(n,
d ln(n)+cw(n)

n
) for any w(n) with limn→∞w(n) =

∞.
Proof ideas:

(1) One direction is another second moment argument and proceeds by showing that there is
a.a.s. a (k− 1)-facet- that is a (k− 1)-face not contained in any k-face. Write Fk−1(X) for
the numberr of (k − 1)-facets in X. Recall the second moment estimate Prob(Fk−1(X) >

0) ≥
E2Fk−1(X)

EF 2
k−1(X)

so that it suffices to compute that this ratio approaches one. Compute

EFk−1 =
(

n
k

)

(1 − p)n−k ∼ nk

k! (1 − n−1−ǫ)n ∼ nk

k!

∑

r
(−n)−rǫ

r! = nk

k! e
−n−ǫ

and EF 2
k−1 =

E2Fk−1 −
(

n
k

)

[(1 − p)2(n−k) − (1− p)n−k] so that
E2Fk−1

EF 2
k−1
∼ 1

1+ 1
EFk−1

which converges to 1.

The other direction (Linial, Meshulam, Wallach [21, 24]) is a clever and tricky cocycle
counting argument.

(2) This involves the local homotopy type theorem from the previous lecture and a local to
global hyperbolicity theorem of Gromov [11, 4].

This is a rough evolution diagram for X ∈ Gd(n, p(n)).
p(n) Hd−1(X) Hd(X)

isolated walls giving free summands vanishing
c
n

conjectural torsion spike a few small (simplex) classes
large classes

d ln(n)
n

last isolated wall
vanishes over Fp and conjecturally Z
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3. August 12 Lecture

Homology of Random Clique Complexes

Consider the clique complex ∆1G1(n, n
−ǫ), of the Erdos-Renyi [9] random graph with ǫ fixed and

n increasing to infinity. The idea is to compare what happens with different values of ǫ. This is a
fairly coarse parameterization.

Conjecture 2. (Kahle [16]) If ǫ 6= 1
k
then X ∈ ∆G(n, n−ǫ has aas H̃r(X,Z) = 0 unless r = ⌊1

ǫ
⌋.

Note that this would imply that except for the fundamental group which ocurs if ǫ ∈ [13 ,
1
2 ] this

would imply that if 1
3 > ǫ 6= 1

k
then X ∈ ∆G(n, n−ǫ a.a.s. has the homotopy type of a wedge of

⌊1
ǫ
⌋-dimensional spheres. Once again there is a second moment local density argument.

Theorem 16. If H is d-lumpless then ǫ = αd(X) is a threshold for X ⊆ ∆dGd(n, n
−ǫ) to contain

a copy of H.

Example. The octahedron is 1-lumpless so X ∈ ∆1G1(n, n
ǫ) containing an octahedron has thresh-

old ǫ = 6
12 = 1

2 .

Theorem 17. (Kahle [16]) The following properties hold aas for X ∈ ∆1G1(n, n
−ǫ).

(1) If ǫ > 1
k
then every X[S] collapses to a (k − 1)-dimensional subcomplex.

(2) If 1
k
> ǫ > 1

k+1 then X retracts to a k-dimensional sphere so H̃k has a Z summand.

(3) If 1
k+1 > ǫ then H̃k(X,Q) = 0.

(4) If 1
2k+1 > ǫ then πk(X) = 1 so H̃k(X,Z) = 0.

(5) (Babson [3]) If 1
2 > ǫ > 1

3 then π1X is nontrivial and hyperbolic.

Here is a rough summary of the theorem as an evolution diagram for ∆dGd(n, n
−ǫ):

ǫ H̃k(X)

every H̃kX[S] = 0
1
k

Z summand
1

k+1
0 over Q and conjecturally over Z

1
2k+1

0 since π1 is trivial
Kahle [16] has a nice graph of the first five Betti numbers with 100 vertices and probability running

from 0 to .6 = 100−
1
9 . The betti numbers have very distinct peaks.

Comments and proof ideas:

(1) A local argument (a simple version of the local limit of a Galton-Watson like tree) shows
that all facet connected k-dimensional components are bounded and have a collapsable face.

(2) The subobject threshold argument shows that there are (k+1)-dimensional cross polytopes
in this regime but not (k+1)-dimensional cross polytopes union (k+1)-dimensional simplices
along (k)-dimensional simplices. This shows that there is a retract to a k-sphere.

(3)

Theorem 18. (Garland, Ballman-Swiatowski [6][5]) If X is a pure d-dimensional simplicial

complex and every σ ∈ X(d−2) has λ2(Llk(σ)) > 1− 1
d
then Hd−1(X,Q) = 0 where [LΓ]uv =

1
deg(u)

if u ∼ v and −1 if u = v and 0 otherwise.
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The spectral computations to apply this theorem are done in [13].
(4)

Theorem 19. (Nerve)If X = ∪i∈IXi and for every S ∈
(

I
t

)

there is ∩i∈SXi is (k − t+ 1)-
connected then X is k-connected.

The Xi for using this theorem ae taken to be vertex stars and the intersection property
follows from checking by density that every collection of (2k + 2) vertices has a common
neighbor.

(5) This is similar to the argument for X ∈ G2(n, p) mentioned in a previous lecture and in
particular involves a similar local density theorem:

Theorem 20. [3] If X is a connected flag 2-complex and every α1(X[S]) < 1
3 then X has

the homotopy type of a wedge of spheres and projective planes.

As with the analogous theorem for α2 it seems there should be a much more direct proof.
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4. August 13 Lecture

Betti Modules of Random Clique Complex Ideals

Recall the evolution theorem from last time.

Definition 21. (See the previous lecture of Faridi) S = SR = R[x1, . . . , xn] contains the nonface

ideal InfX of X and the facet ideal IFX .

Example. See the earlier example with n = 5, f1 = 6 and f2 = 1.

Definition 22. TorSi (S/I
nf
X ;R) ∈ R−mod

Zn−graded with TorSi (S/I
nf
X ; k)m ∼= kβ

k
i,m(X) and βk

i,m =
∑

|m|=m βk
i,m.

Theorem 23. (Hochster[12]) βi,χS
(X) = h̃|S|−i−1(X[S]).

Example.

3 2 1 0 |m|

S 0 h̃−1

1

S4 2 h̃0

S3 3 h̃0

S 4 h̃1

S 5 h̃1

with differentials...

Thus the previuos homology vanishing theorems for ∆1G1(n, n
−ǫ) have direct implications for

the Betti modules of InfX :

Theorem 24. If k > 1
ǫ
and X ∈ ∆G1(n, n

−ǫ) then aas βk
i (X) = 0 for every i < n− k.

Proof idea: This follows from the fact that HkX vanishes because of a local argument which is
inherited by induced subcomplexes.

This implies that aas the Betti diagram for InfX is supported in a strip of width ⌊1
ǫ
⌋ which

therefore is a bound on the depth.

Theorem 25. If k < 1
ǫ
− 1 and X ∈ ∆1G1(n, n

−ǫ) then aas βQ
n−k−1(X) = 0.

Proof idea: This uses a spectral argument which is not inherrited so only the χ[n] graded Tor
modules are restricted.

This leaves the question of depth open. It is stated as problem 2.

Lemma 26. If S = {1, . . . nλ} then X ∈ ∆1G1(n, n
−ǫ) implies that

X[S] ∈ ∆1G1(n
λ = m,n−ǫ = m− ǫ

λ ).

Corollary 27. If k < λ
ǫ
− 1 and X ∈ ∆1G1(n, n

−ǫ) then a.a.s. βnλ−k−1,[nλ] = H̃kX[S] = 0.

The interesting question here is whether in this situation one gets βnλ−k−1,nλ = 0 a.a.s. This

looks very similar, but in the corollary one only gets vanishing for a specific subcomplex with nλ

vertices and in the question one asks about vanishing for all subcomplexes with nλ vertices.
It is also interesting to look at similar questions for X ∈ ∆dGd(n, n

−α).
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5. August 14 Lecture V

Homology and Betti Modules for Finely Random Simplicial Complexes

[19, 22]

Theorem 28. (Aronshtam, Linial, Luczak, Meshulam, Peled)

(1) limn→∞ PX∈∆Gd(n,
c
n
)(fd+1X = k) = e−c ck

k!

(2) [1, 2] For every d there is ad with c = ad a threshold in ∆dGd(n,
c
n
) for the property of

collapsing to a (d − 1)-dimensional subcomplex and for the property that every induced
subcomplex has such a collapse.

(3) [1, 22] For every d there is bd with c = bd a threshold in ∆dGd(n,
c
n
) for the property of

H̃d(X) = 0 and SHX shifts from order n to order κ(c)
(

n
d+1

)

with κ(c) > κ(bd) > 0.

(4) [21, 24, 13] c = d is a threshold in ∆dGd(n,
c ln(n)

n
) for H̃d−1(·;F) vanishing for any field F

and if 80d < c then H̃d−1(·;Z) vanishes.

The constants in this theorem are explicitly approximable solutions to transcendental equations
with ad close to ln(d) and bd slightly less than d+ 1.

d 2 3 4 5 10 100 1000
ad ∼ ln(d) 2.455 3.089 3.509 3.822 4.749 7.555 10.175
bd ∼ d+ 1 3− .25 4− .1 5− .04 6− .02 11− .0001 101− 10−40 1001 − 10−431

Definition 29. If X is a simplicial complex with all possible (d−1)-faces then SHX is the number
of d-faces F not in X for which hd(X ∪ {F}) > hd(X).

Here is an evolution diagram summarizing the above theorem.
p(n) local structure 3global structure

(d− 1)-connected groups of faces are bounded size every X[S] collapses so H̃d = 0
Hd−1 6= 0

ad
n

Poisson d-faces (few)
Poisson d-faces X does not collapse

but Hd(X) = 0 so X is like a Dunce Cap
only ∼ n d-faces increase Hd

Hd−1 6= 0
bd
n

Poisson d-faces
Poisson d-faces Hd(X) 6= 0

a positive fraction of d-faces increase Hd

Hd−1 6= 0
d+1
n

Poisson d-faces (more)
easy to see Hd 6= 0
Hd−1 6= 0

d ln(n)
n

last free (d− 1)-face covered
conjectural torsion spike

H̃d−1(·;F) = 0 6= H̃d

80d ln(n)
n

H̃d−1(·;Z) = 0 6= H̃d

Comments and proof ideas:

(1) This is the same Poisson distribution of small subcomplexes as from other lectures and
follows from a direct second moment argument.
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(2) Local limit with ad the threshold for extinction of the Galton-Watson d-tree process. This
gives a local collapsing which is inherrited by induced subcomplexes.

(3) The typical complex in this regime is like a dunce cap in that it does not collapse, but has
vanishing homology. Draw a picture here.

(4) The spectral measure for the Laplacian on the local limit converges and yields an estimate
for the Betti number.

(5) The nonvanishing for d+ 1 < c is trivial by counting the dimensions of chain groups. The
slight improvement to the sharp constant is considerable work.

Corollary 30. (Betti Modules) If X ∈ ∆dGd(n,
c
n
) or ∆dGd(n,

c ln(n)
n

) then the only nontrivial

Betti modules for S/InfX are from two strands: ⊕iTori,i+d
∼= ⊕AHd−1X[A] and ⊕iTori,i+d+1

∼=
⊕AHdX[A].

The interesting transitions involve where the first strand ends, where the second one starts along
with the distributions of both Betti numbers. The torsion in the homology of the induced subcom-

plexes of X is reflected in primes for which βFpInfX > βQInfX and the interval in which this occurs
is also interesting. A few of these follow from the theorems above, but most are conjectural.
The surprising theorem of Kalai [18] counting acyclic simplicial complexes weighted by torsion
along with the heuristic for the Cohen-Lenstra [7] distribution discussed earlier has helped give
intuition for what to expect for torsion. These predictions fit with experiments [17], but little has
been proven.

Theorem 31. (Kalai [18])

n(
n−2
d ) =

∑

|H̃d−1T |
2

with the sum over Q-acyclic d-dimensional simplicial complexes T with vertices [n] and all possible
faces of dimension less than d.

This means that the number of d-faces is determined for T simply because the Euler characteristic
must be 0.

Example. The inspiration for such a theorem is the case of trees or d = 1 where nn−2 is the
number of labeled trees with vertices [n]. If n = 4 there are two isomorphism types of trees. The
path has 12 labelings and the non-path has 4 giving 42 = 16.

Example. If d = 2 and n = 4 there is only one isomorphism type of 2-complex with 3 triangles

and 4 vertices and it has 4 = 4(
2
2) labelings.

From this one can get a feel for how large torsion should be in such a Q-acyclic complex and
hence how big the primes one sees giving extra Betti numbers in random complexes might be.

Theorem 32. ET |H̃d−1T | ∼ ecn
d

and maxT |H̃d−1T | < ncnd

.
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6. Exercises

6.1. August 8.

(1) Show that if b is a random variable valued in Z≥0 and the expectation values Eb and Eb2

are finite and nonzero then E2b
Eb2
≤ Prob(b ≥ 1) ≤ Eb.

Hint: If bn = Prob(b = n) then 1 =
∑

n bn, Prob(b ≥ 1) = 1 − b0, Eb =
∑

n nbn and
Eb2 =

∑

n n
2bn.

(2) Find E(N2
K3

) in G1(n, n
−α).

Hint: ENK3 =
∑

n nProb(X has exactly n triangles) = 1
6

∑

f :[3]→[n]Prob(Im(f) is a triangle in X).

The second one is easier to work with. Thus EN2
K3

=
∑

n n
2Prob(X has exactly n triangles) =

1
36

∑

f :[3]→[n],g:[3]→[n]Prob(Im(f) and Im(g) are triangles in X). The second one is again

easier to work with and splits into four terms indexed by the overlap of the images of f and
g. the result in the limit of large n should be dominated by disjoint triangles and of order
1
36n

6−6α if α < 1 but dominated by the two triangles being the same and of order 1
6n

3−3α

if α > 1.
(3) Find the maximum of α(X) if X ∼= S2,P2,T2,Σ2.

Hint: Use the Euler characteristic. For the sphere the best has the fewest vertices and is
the tetrahedron with α = 1. For the projective plane the best has the fewest vertices and
is the quotient of the icosohedron with α = 35. For the torus the number of vertices does
not matter and α = 1

2 always. For higher genus the best has the most vertices and so α is

less than, but arbitrarily close to 1
2 .

(4) Show that G1(n, n
− 7

6 ) aas contains a path of length three and aas does not contain one
containing the vertex 1. This is to point ot the difference between an event happenning at
some point as compared to at a particular point. Sometimes one also cares about events
hapening at every point as in problem 4 on the 12th.

(5) Find a 2-complex X and number α with ENX → ∞ but Prob(X ⊆ Y ) → 1 with Y ∈
G1(n, n

−α).
Hint: Consider the complex with four vertices, but only one triangle.

(6) Show that
∑

Γ finite Abelian p-group
1

|Aut(Γ)| converges while
∑

Γ finite Abelian group
1

|Aut(Γ)|
diverges.

(7) Find the most likely Betti tables with d = 2 and n = 3, 4, 5.

6.2. August 12.

(1) Show that if X ∈ ∆1G1(n, n
− 1

4 ) then a.a.s. every square in X bounds the suspension of
some path.
Note: a square is a subgraph ({a, b, c, d}, {{a, b}, {b, c}, {c, d}, {d, a}}) and the suspension of
a path of length three which the square bounds is a subgraph ({a, b, c, d, y, z}, {{{a, b}, {b, c}, {c, d}, {d, a}, {a,
This should be drawn.

(2) Check that λ2(Cn) = 1− cos(2π
n
).

Hint: Compute directly the eigenvectors va = (1, wa, w2a, . . . w(n−1)a) with wn = 1.

(3) Find ǫ with X ∈ ∆G1(n, n
−ǫ) aas having X[n

3
4 ] simply connected.

Recall that 1
3 > ǫ implies that X is aas sc.

A more difficult, but more interesting question is to find ǫ so that aas every S ∈
( [n]

n
3
4

)

has

X[S] simply connected.
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(4) Check that X ∈ ∆1G1(n, n
− 1

5 ) a.a.s. has every 4 vertices having a common neighbor.
This is what comes up in using the nerve lemma for the a.a.s. simple connectivity argument.

(5) Is there ǫ with X ∈ ∆1G1(n, n
−ǫ) having X[15] a.a.s. simply connected?, with a.a.s. every

X[[n]− {v}] simply connected?

6.3. August 14. Questions:

(1) Show that limn→∞ PX∈∆2G2(n,
c
n
)(B1,X({1, 2, 3}) ∼=???) = e−c c3

3! . Recall that limn→∞(1 −
1
r
)r = e.

(2) Show that if X ∈ ∆2G2(n,
4
n
) then aas H2(XQ) 6= 0.

(3) Find a 2 dimensional Q-tree with first homology isomrphic to C2, to C2 × C2.

(4) Show that if c < ad and X ∈ ∆dGd(n,
c
n
) then InfX a.a.s. has a linear resolution.

Recall that in this regime there is a collapsing to a (d − 1)-dimensional subcomplex which
is inherited by induced subcomplexes.
For bd rather than ad this is more interesting.

(5) Find |SHΓ| if Γ is a forest with two components.
(6) Show that the probability that a Galton Watson tree process in infinite if it has parameter

λ is
(a) 0 if λ < 1
(b) nonzero (and also not 1) if λ >> 1.

(7) Show that if a group G of order 8 is chosen from a Cohen-Lenstra distribution (so that the
ratios of probabilities for C3

2 , C2 × C4 and C8 are (1 : 21 : 42)) and an element g ∈ G is
chosen uniformly then the ratio of probabilities for the quotient group G\g to be isomorphic
to C2

2 or C4 is (1 : 3). That is it again agrees with a CL distribution.
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7. Problems: August 16, 2017

(1) For every α, q, k and d find (estimate) the smallest m = m(α, q, k, d) for which there is

X ⊆
( [m]
d+1

)

with h̃k(∆dX;Fq) 6= h̃k(∆dX;Q) and αdX ≥ α.
The point of this question is that from the Hochester formula and local density one gets that

ifX ∈ ∆dGd(n, n
−α) then a.a.s. one has β

Fq
a,m = βQ

a,m with a = m−k−1 iffm ≤ m(α, q, k, d).
For d = 2, k = 1, and q = 3 there is a triangulation of a Moore space with 19 triangles,
9 vertices, 27 edges and α(X) = 9

19 showing that m( 9
19 , 3, 1, 2)) ≤ 9 while its barrycentric

subdivision sdX has 55 vertices and α(sdX) = 9
19 + 1

6·19 so that m( 55
154 , 3, 1, 2)) ≤ 55.

(2) Show that the depth of S/InfX is aas ⌊ 1
α
⌋ if X ∈ ∆1G1(n, n

−α).

This has an equivalent homology statement: H̃rX[[n] − S] = 0 if r + |S| ≤ ⌊ 1
α
⌋ which is

the theorem [] from the Aug 12 lecture if S = ∅.
(3) Find thresholds for Hk(X;Q) to vanish with X ∈ ∆dGd(n, n

−α).
There may be analogs of the theorems [] from the Aug 12 lecture about ∆1G1. This would
be the first step in the extension of the previous problem on depth to X ∈ ∆dGd(n, n

−α).

(4) Study IFX with X ∈ Gd(n, n
−α) or equivalently InfY with Y ∈ ∆dGd(1 − n−α). For the

study of Hk(X) with k fixed this is not an interesting probability regime since it will be
a.a.s. trivial for each k. It is more interesting to take k to be a function of n or to look
at Hk(X[[n] − S]) with |S| fixed. More generally other large p regimes such as p = 1

2 are
interesting if one considers HkX[S] with k and |S| depending on n.

(5) Does InfX have a linear resolution a.a.s. if X ∈ ∆dGd(n,
c
n
) with ad ≤ c < bd. This is

equivalent to showing that a.a.s. for every S ⊆ [n] there is H̃rX[S] = 0 unless r = d− 1.

Note that for any X ∈ Gd(n, p) and S ⊆ [n] one has trivially that H̃rX[S] = 0 unless
r ∈ {d − 1, d} and for X ∈ ∆dGd(n,

c
n
) this is still easy to see a.a.s. since the complexes

only differ a.a.s. by a finite number of isolated d+ 1 faces. If c < ad there is a.a.s. a linear
resolution and if bd < c then already the homology of X is a.a.s. not supported in one
degree so there is no linear resolution even without looking at induced subcomplexes. With
X as in the problem the theorems from lecture give H̃rX = 0 is a.a.s. unless r = d− 1 and
this trivially implies the same statement for H̃rX[[s(n)]] for any function s(n) The problem
is to show this vanishing for all induced subcomplexes at once.
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