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The balanced random network model attracts considerable interest be-
cause it explains the irregular spiking activity at low rates and large mem-
brane potential fluctuations exhibited by cortical neurons in vivo. In this
article, we investigate to what extent this model is also compatible with
the experimentally observed phenomenon of spike-timing-dependent
plasticity (STDP).

Confronted with the plethora of theoretical models for STDP available,
we reexamine the experimental data. On this basis, we propose a novel
STDP update rule, with a multiplicative dependence on the synaptic
weight for depression, and a power law dependence for potentiation. We
show that this rule, when implemented in large, balanced networks of re-
alistic connectivity and sparseness, is compatible with the asynchronous
irregular activity regime. The resultant equilibrium weight distribution
is unimodal with fluctuating individual weight trajectories and does not
exhibit development of structure. We investigate the robustness of our
results with respect to the relative strength of depression.

We introduce synchronous stimulation to a group of neurons and
demonstrate that the decoupling of this group from the rest of the net-
work is so severe that it cannot effectively control the spiking of other
neurons, even those with the highest convergence from this group.
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1 Introduction

In order to understand cognitive processing in the cortex, it is necessary
to have a solid understanding of its dynamics. The balanced random net-
work model has been able to provide some insight into this matter, as it
can account for the large fluctuations in membrane potential and the ir-
regular firing at low rates observed in vivo for cortical neurons. Many
aspects of this model have been investigated and are now well understood
(van Vreeswijk & Sompolinsky, 1996, 1998; Brunel & Hakim, 1999; Brunel,
2000). Until now, studies have mainly focused on the activity dynamics
of such networks under the assumption that the strength of a synapse re-
mains constant. However, recent research indicates that the strength of a
synapse varies with respect to the relative timing of pre- and postynap-
tic spikes (Markram, Lübke, Frotscher, & Sakmann, 1997; Zhang, Tao, Holt,
Harris, & Poo, 1998; Bi & Poo, 1998; Debanne, Gähwiler, & Thompson, 1998;
Sjostrom, Turrigiano, & Nelson, 2001; Froemke & Dan, 2002; Wang, Gerkin,
Nauen, & Bi, 2005), a phenomenon known as spike-timing-dependent
plasticity (STDP). This has prompted intense theoretical interest (see, e.g.,
Kempter, Gerstner, & van Hemmen, 1999; Song, Miller, & Abbott, 2000; van
Rossum, Bi, & Turrigiano, 2000; Kistler & van Hemmen, 2000; Rubin, Lee, &
Sompolinsky, 2001; Kempter, Gerstner, & van Hemmen, 2001; Gütig,
Aharonov, Rotter, & Sompolinsky, 2003; Izhikevich & Desai, 2003; Burkitt,
Meffin, & Grayden, 2004; Guyonneau, VanRullen, & Thorpe, 2005), but these
studies have thus far tended to focus on the development of the synaptic
weights of a single neuron in the absence of the activity dynamics of a re-
current network. Such network studies as there are (Hertz & Prügel-Bennet,
1996; Levy, Horn, Meilijson, & Ruppin, 2001; Izhikevich, Gally, & Edelman,
2004; Iglesias, Eriksson, Grize, Tomassini, & Villa, 2005) have shown di-
vergent results, such as the development of strongly connected neuronal
groups in Izhikevich et al. (2004) and systematic synaptic pruning in Iglesias
et al. (2005). Additionally, these studies all assume a level of connectivity
orders of magnitude below that seen in cortical networks (Braitenberg &
Schüz, 1998).

The issue of connectivity is significant, as STDP is sensitive to corre-
lation in neuron activity. Reducing the number of incoming synapses per
neuron and scaling up the synaptic strength to compensate for this will
inevitably influence this correlation. To ensure that the development of
synaptic weights observed is not an artifact of low connectivity, it is neces-
sary to examine the behavior of high-connectivity networks. In this article,
we investigate the activity dynamics and the development of the synaptic
weight distribution for recurrent networks with biologically realistic lev-
els of connectivity and sparseness. This necessitates the use of distributed
computing techniques for simulation, previously developed in Morrison,
Mehring, Geisel, Aertsen, & Diesmann (2005). As a starting position, we
use the well-understood balanced random network model (van Vreeswijk
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& Sompolinsky, 1996, 1998; Brunel & Hakim, 1999; Brunel, 2000), and extend
it to incorporate STDP in its excitatory-excitatory synapses. The model of
STDP implemented is based on a reexamination of the experimental data of
Bi and Poo (1998), resulting in a novel power law update rule. The network
is investigated for both the case that no structured external stimulus is ap-
plied and that a group of neurons is subjected to an irregular synchronous
stimulus.

In section 2 we reexamine the experimental data for STDP and propose a
well-constrained power law model for the synaptic weight update. A con-
sideration of rate perturbation further constrains the model to an all-to-all,
rather than nearest-neighbor, spike pairing scheme. The neuron and net-
work models are introduced in section 3, and the activity dynamics for a
static balanced random network is reviewed. The network is extended to
incorporate STDP in section 4. In section 4.1, we demonstrate the mutual
equilibrium of weight and activity dynamics in a plastic network with no
structured external stimulus and show that no structure is developed. This
finding turns out to be robust across changes to the network connectivity,
spike pairing scheme, and formulation of the STDP update rule. We ex-
amine the behavior of the network if the STDP model exhibits depression
that over- or undercompensates for the correlation in network activity. In
section 4.2, we apply a synchronous stimulus to a group of neurons and
investigate its potential to induce development of structure. We show that
a strong stimulus causes the network to enter a pathological state, whereas
the structure-enhancing effects of a weaker stimulus are counteracted by
the decoupling of the stimulated group from the rest of the network. These
results are discussed in section 5, as are ways in which the investigated mod-
els might be adapted to enable stimulus-driven development of structure.
An algorithmic template for implementing STDP in network simulations
that is compatible with distributed computing is given in the appendix.

2 A Novel Power Law Model of STDP

There are many theoretical models of STDP in circulation. The two main
sources of disparity are the weight dependence of the weight changes—for
example, additive (Song et al., 2000), multiplicative (Rubin et al., 2001), or
somewhere in between (Gütig et al., 2003)—and which pairs of spikes con-
tribute to plasticity—for example, all-to-all (Gerstner, Kempter, van Hem-
men, & Wagner, 1996) and nearest neighbor (Izhikevich et al., 2004). Other
variants include some degree of activity dependence, for example suppres-
sion (Froemke & Dan, 2002) or postsynaptic activity-dependent homeostasis
(van Rossum et al., 2000). It has already been demonstrated that variations
in the formulation of the STDP update rules can lead to qualitatively differ-
ent results (Rubin et al., 2001; Gütig et al., 2003; Izhikevich & Desai, 2003;
Burkitt et al., 2004), but there is as yet no consensus. Therefore, finding a
formulation of STDP describing the experimental data as well as possible
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Figure 1: Weight and time dependency of change for the Bi and Poo (1998)
protocol. (A) Absolute change in excitatory postsynaptic current (EPSC) am-
plitude as a function of initial EPSC amplitude in log-log representation for
potentiation where the presynaptic spike precedes the postsynaptic spike by
2.3 to 8.3 ms (plus signs) and depression where the postsynaptic spike preceded
the presynaptic spike by 3.4 to 23.6 ms (circles). The lower black line is a linear
fit to the depression data: slope = −1, offset = 2. The upper black line is a linear
fit to the potentiation data assuming a slope = 0.4, resulting in an offset = 1.7.
The pale gray line shows an additive STDP prediction for the data, and the
dark gray curve shows a multiplicative STDP prediction, with wmax = 3000 pA.
(B) Percentage change in EPSC amplitude as a function of spike timing. Curves
show power law prediction for the data with µ = 0.4, τ = 20 ms, λ = 0.1, and
α = 0.11 for different initial EPSC amplitudes: 17 pA, pale gray curve; 50 pA,
medium gray curve; 100 pA, dark gray curve. All data from Bi and Poo (1998).

is still a relevant issue. Here we neglect the activity dependence and inves-
tigate how the weight dependence of potentiation and depression can best
be characterized and what is an appropriate spike pairing scheme to apply.

2.1 Weight Dependence of STDP. Figure 1A shows the dependence
of synaptic weight change on initial synapse strength for the experimental
data from Bi and Poo (1998). The difference between this plot and the
classical plot (Figure 5 in Bi and Poo) is that here, the absolute, rather than
relative, change in the synaptic strength is plotted and a double logarithmic
representation is used. The exponent of the dependence can be obtained
from the slope of a linear fit to the data. In the case of depression, neglecting
the largest outlier results in an exponent of −1. We will therefore assume
a purely multiplicative update rule: �w− ∝ w. In the case of potentiation,
depending on the treatment of the largest outlier, an exponent in the range
0.3 to 0.5 results. This suggests a power law rule of the form �w+ ∝ wµ,
for which we shall assume µ = 0.4. This novel rule fits the data better than
either additive (�w+ = c) or multiplicative (�w+ ∝ wmax − w) rules, shown
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in Figure 1A for comparison. Although all the rules can be fitted to give
similar results for synapses in the 30 to 100 pA range, the greatest difference
in prediction is for the behavior of very weak synapses. A multiplicative
rule predicts a greater absolute potentiation for synapses close to 0 pA than
that obtained for synapses in the 30 to 100 pA range, and an additive rule
predicts the same absolute potentiation regardless of synaptic strength. In
contrast to these rules, the power law rule predicts very small absolute
increases when very weak synapses are potentiated.

2.2 Constraining the Model Parameters. Having established the
weight dependence for the change in synaptic strength over the entire
60-pair protocol, we now constrain the model parameters. The update rule
underlying the synaptic modifications over the course of the protocol has a
weight and a time component; specifically, we assume it takes the form

�w+ = λ60w
1−µ

0 wµe− |�t|
τ if �t > 0 (2.1)

�w− = −λ60αwe− |�t|
τ if �t < 0,

where τ is the time constant, λ60 is the learning rate over the whole protocol,
w0 is a reference weight, and α scales the strength of depressing increments
with respect to the strength of potentiating increments. We take �t to be the
difference between the postsynaptic and presynaptic spikes arriving at the
synapse, that is, after the delays due to axonal- and backpropagation, as sug-
gested by Debanne et al. (1998). If the spikes arrive exactly synchronously,
�t = 0, no alteration is made to the weight.

We start by fitting the potentiation data from Figure 1A to the theoretical
form of equation 2.1. We have:

log(�w+) = µ log(w) + (1 − µ) log(w0) + log
(
λ60e− |�t|

τ

)
. (2.2)

Without loss of generality, we set w0 = 1 pA, and substitute for �t the mean
time interval �t = 6.3 ms of the potentiation data. The value of log(λ60e− �t

τ )
is thus the offset of the linear fit to the potentiation data. Assuming τ =
20 ms in line with other theoretical work on STDP (e.g., Song et al., 2000;
van Rossum et al., 2000), this results in the value λ60 = 7.5. However, to
implement STDP in a simulation, we need to know the value of the learning
rate for just one pair, λ instead of the learning rate over 60 pairs, λ60. This can
be done numerically: by substituting �w+ = w in equation 2.2 and solving
for w, the value of the weight that would experience 100% potentiation in

this protocol can be calculated as w(0) = w0 e
log(λ60)−�t/τ

1−µ = 17 pA. We start at
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this initial weight, and apply the single pair update rule 60 times:

w(1) = w(0) + λw
1−µ

0 w
µ

(0)e
− |�t|

τ

w(2) = w(1) + λw
1−µ

0 w
µ

(1)e
− |�t|

τ

...

w(60) = w(59) + λw
1−µ

0 w
µ

(59)e
− |�t|

τ .

A value of λ = 0.1 results in w(60) = 2w(0) = 34 pA, as required.
As the range of time intervals used to produce the depression data is too

large to have much confidence in the offset of the linear fit, we determined
α in an analog fashion to give 40% depression for �t = 6.3 ms. For the rest
of this article, unless otherwise stated, we will use the following update
rule for a pair of spikes:

�w+ = λw
1−µ

0 wµe− |�t|
τ if �t > 0 (2.3)

�w− = −λαwe− |�t|
τ if �t < 0,

with µ = 0.4, τ = 20 ms, w0 = 1 pA, λ = 0.1, and α = 0.11. The fit of this
update rule to the time-dependence data of Bi and Poo (1998) is depicted
in Figure 1B for three different initial EPSC amplitudes. This produces a
similar window function to that reported in studies on cortical rather than
hippocampal plasticity (e.g., Froemke & Dan, 2002), where a maximum
potentiation of 103% and a maximum depression of 51% was reported.
Although the above calculation assumes that the time constants for po-
tentiation and depression are equal, τ+ = τ− = τ , it is trivial to adjust the
parameters to accommodate τ+ < τ−, as reported in several experimental
studies (e.g., Feldman, 2000; Froemke & Dan, 2002). An appropriate efficient
algorithmic implementation of STDP suitable for distributed computing is
given in the appendix.

2.3 Spike Pairing Scheme. A self-consistent rate is a necessary condi-
tion for stability in the balanced random network model. It is known that
different spike pairing schemes result in qualitatively different weight dy-
namics as a function of postsynaptic rate (Kempter et al., 2001; Izhikevich &
Desai, 2003; Burkitt et al., 2004). Therefore, to establish which pairs of spikes
should be considered for the synaptic weight update, we consider the effects
of different spike pairing schemes when a self-consistent rate is perturbed.
We implemented a nearest-neighbor scheme, whereby a presynaptic spike
is paired with only the last postsynaptic spike to effect depression, and a
postsynaptic spike is paired with only the last presynaptic spike to effect
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potentiation. Conversely, in an all-to-all scheme, a presynaptic spike is
paired with all previous postsynaptic spikes to effect depression, and a
postsynaptic spike is paired with all previous presynaptic spikes to effect
potentiation.

For this investigation, 1000 neurons were provided with input designed
to match the network model described in section 3, namely, 9000 inde-
pendent excitatory and 2250 independent inhibitory Poisson processes at
7.7 Hz to model input from the local network, and a further 9000 indepen-
dent excitatory Poisson processes at 2.32 Hz to model external excitation.
(For all synaptic and neuronal parameters, refer to section 3). Of the exci-
tatory inputs modeling local network input, 1000 of them were mediated
by synapses implementing the power law STDP update rules described
above; the rest were static. The 1 × 106 plastic synapses were initialized
from a gaussian distribution with a mean of 45.61 pA and a standard devia-
tion of 4.0 pA. In the case of the all-to-all pairing scheme, we set α = 0.1021
and λ = 0.0973, and in the case of the nearest-neighbor scheme, α = 0.0976
and λ = 0.116. This choice of parameters results in a firing rate of 7.7 Hz
and a stable and unimodal synaptic weight distribution measured across
all the plastic synapses with a mean of 45.5 pA and a standard deviation of
4.0 pA. A unimodal distribution was expected for the power law formula-
tion of STDP, as bimodal distributions have been reported only for additive
or near-additive rules (see Gütig et al., 2003), with very weak or no weight
dependence, whereas the power law formulation has a strong dependence
on the initial synaptic strength.

To perturb the self-consistent rate, a current was injected into the neu-
rons from 50 s onward. A current of 30 pA increased the firing rate by
approximately 2 Hz; a current of −35 pA decreased it by the same amount.
For all configurations of spike pairing scheme and injected current, the
unimodal nature of the distribution was conserved. As can be seen in
Figure 2, the choice of pairing scheme has a significant effect on the con-
sequent weight development. If the postsynaptic rate is increased, an all-
to-all pairing scheme results in a net decrease of synaptic weights (see
Figure 2B), whereas a nearest-neighbor scheme results in a net increase (see
Figure 2A). Conversely, if the postsynaptic rate is decreased with respect to
the input rate, an all-to-all scheme increases the mean synaptic weight (see
Figure 2B), whereas a nearest-neighbor scheme decreases it (see Figure 2A).
In other words, the all-to-all scheme acts like a restoring force, counteract-
ing the rate disparity, whereas the nearest-neighbor scheme acts in such
a direction as to magnify any rate disparity. These results do not depend
on the time constants for depression and potentiation being equal; results
obtained for τ− = 34 ms and τ+ = 14 ms as reported by Froemke and Dan
(2002), were qualitatively the same (all-to-all scheme: α = 0.042, λ = 0.0973;
nearest-neighbor scheme: α = 0.0458, λ = 0.116; data not shown).

In the absence of some sliding threshold mechanism (e.g., Bienenstock,
Cooper, & Munro, 1982) or postsynaptic homeostasis (see Turrigiano, Leslie,
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Figure 2: Development of mean synaptic weight for (A) nearest-neighbor and
(B) all-to-all spike pairing schemes, averaged over 1 × 106 synapses. From 50 s
onward, a current is injected into the postsynaptic neurons to increase their rate
(upward triangles) or decrease it (downward triangles) by 2 Hz. Dashed curves
show mean weight development when no current is injected. See the text for
further details of the simulation.

Desai, Rutherford, & Nelson, 1998), an all-to-all spike pairing scheme is
clearly better suited to situations where a self-consistent rate is required
and shall be used for the remainder of this letter.

3 Network Model

We consider networks of current-based integrate-and-fire neurons. For each
neuron, the dynamics of the membrane potential V is

V̇ = − V
τm

+ 1
C

I ,

where τm is the membrane time constant, C is the capacitance of the mem-
brane, and I is the input current to the neuron. The current arises as a
superposition of the synaptic currents and any external current. The synap-
tic current Is due to one incoming spike is represented as an α-function:

Is(t) = w
e
τα

te−t/τα ,

where w is the peak value of the current and τα is the rise time. When
the membrane potential reaches a given threshold value �, the membrane
potential is clamped to zero for an absolute refractory period τr. The values
for these parameters used in this article, unless otherwise stated, are:

τm: 10 ms
C : 250 pF



STDP in Balanced Random Networks 1445

�: 20 mV
τr: 0.5 ms
w: 45.61 pA
τα : 0.33 ms

The parameters are chosen such that the generated postsynaptic potentials
(PSPs) have a rise time of 1.7 mV and a half-width of 8.5 ms (e.g., Fetz,
Toyama, & Smith, 1991). To avoid transients in the dynamics at the begin-
ning of the simulation, the initial membrane potentials are drawn from a
gaussian distribution with a mean of 5.7 mV and a standard deviation of
7.2 mV.

The network model was derived from Brunel (2000), where the larger
number of excitatory neurons is balanced by increasing the strength of
the inhibitory connections. In order to realize biologically realistic values
for both the number of connections per neuron (� 104) and the connection
probability (� 0.1) in the same network, it is necessary to consider networks
with of the order of 105 neurons, approximately the number of neurons in
a cubic millimeter of cortex (Braitenberg & Schüz, 1998). Specifically, we
simulated networks with 90,000 excitatory and 22,500 inhibitory neurons.
In the static network, each neuron receives 9000 connections from excitatory
and 2250 connections from inhibitory neurons, whereby the peak current of
an inhibitory synapse is larger than that of an excitatory synapse by a factor
of −5. A neuron is not permitted to have a connection to itself. The total
number of synapses in the network is 1.27 × 109. Additionally, each neuron
receives an independent Poissonian stimulus corresponding to 9000 excita-
tory spike trains, each at 2.32 Hz. The strength of these external excitatory
connections is the same as the local excitatory connections. The propagation
delay between neurons is 1.5 ms, and the networks are simulated with a
computational resolution of 0.1 ms.

The activity of the network described above, if all synapses are static,
is in the asynchronous irregular (AI) regime (Brunel, 2000), whereby each
neuron fires irregularly at a low rate (coefficient of variation for the in-
terspike interval CVISI = 0.91, rate ν = 7.8 Hz), and the network activity is
not characterized by synchronous events. However, even in the AI regime,
the network is not devoid of synchronous activity. In general, both slow
and fast oscillations can be excited (Brunel & Hakim, 1999; Brunel, 2000;
Tetzlaff, Morrison, Timme, & Diesmann, 2005). The slow oscillations are
eradicated by the use of a noisy external stimulus and drawing the initial
membrane potentials from a distribution. The fast oscillations are some-
what more tenacious and are clearly visible in the cross-correlogram in
Figure 3. They cause a high variability in the spike count, which can be
quantified by the Fano factor, calculated by binning the spike times, and
dividing the variance of the spike count by the mean. In this article, all
Fano factors are calculated by binning the spike trains from 1000 neurons
(unless otherwise stated), using a bin size of 3 ms, which resulted in a mean
spike count of at least 10 spikes per bin for all the data sets investigated.
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Figure 3: Cross-correlogram of the spiking activity in the static balanced ran-
dom network, averaged over 500 pairs of neurons and 50 s, using a bin size
of 0.1 ms. This is calculated as the cross-covariance normalized by the square
root of the product of the variances. As can be seen in the inset, the cross-
correlogram is shifted to the right by the synaptic propagation delay of 1.5 ms,
as it is recorded from the perspective of the synapse, and the delay is entirely
dendritic (see the appendix).

The above network has a Fano factor for the spike count of FSC = 7.6, sig-
nificantly higher than the value of 1, which is a characteristic of Poissonian
statistics.

In the case of an idealized network with pure Poissonian firing statistics,
where the excitatory synapses exhibit STDP as described in section 2, the
fix point of the resulting synaptic weight distribution can be easily deter-

mined: w∗ = w0α
1

µ−1
p . Setting w∗ = 45.61 pA in line with the static network

described above, this determines αp = 0.1. However, as will be demon-
strated in section 4, to retain the activity dynamics of the static network,
a slightly larger α > αp is required to compensate for the structured raw
cross-correlation induced by the fast oscillations.

4 Dynamics of Network Activity and Weight Distribution

4.1 Unstimulated Network. Replacing the excitatory-excitatory con-
nections in the static network with synapses following the power law
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Figure 4: Synaptic weight distribution and correlation in the plastic balanced
recurrent network with α = 1.057αp. (A) The percentage area difference of the
weight distribution from the final distribution (at 2000 s) as a function of time.
The data were recorded from the outgoing excitatory-excitatory synapses of
900 neurons: 8.1 × 106 synapses. (B) Histogram of the equilibrium synaptic
weight distribution, averaged over 10 samples in the final 500 s. The black
curve indicates the gaussian distribution, with the mean and standard deviation
obtained from the histogram (µw = 45.65, σw = 3.99). (C) Cross-correlogram
of the spiking activity, averaged over 500 pairs of neurons and 50 s, using
a bin size of 0.1 ms. The recording was made after the weight distribution
had stabilized (400 to 450 s). (D) Difference between the cross-correlograms of
the plastic network and a static network using synaptic strengths drawn from
the equilibrium distribution shown in (B). Cross-correlograms calculated as in
Figure 3.

STDP update rules given by equation 2.3, a stable network configuration is
achieved for α = 1.057αp. The resultant weight distribution settles within
200 s to approximately gaussian (µw = 45.65, σw = 3.99; see Figures 4A and
4B).

The activity of the plastic network is close to the activity of the static net-
work described in section 3: a slightly higher rate of 8.8 Hz is observed. The
other spike statistics are also comparable (CVISI = 0.88, FSC = 8.5). Some
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difference is to be expected, as in the static network all excitatory-excitatory
synapses have the same weight, whereas in the plastic network, the distri-
bution of weights contributes to the fluctuations of the membrane potential
and so increases the rate. Indeed, if the weights in the static network are
chosen from a gaussian distribution with the same mean and standard de-
viation as the equilibrium distribution, the activity statistics are very similar
(ν = 8.9 Hz, CVISI = 0.9, and FSC = 8.5). For the rest of this letter, the static
network using this distribution of synaptic weights will be considered a
control case.

The similarity of the dynamics is also demonstrated by the cross-
correlogram in Figure 4C. The cross-correlogram has qualitatively the same
shape as that of the static network, and the difference of the two (see
Figure 4D) shows no structure whatsoever. Therefore, we can conclude that
the two networks exhibit the same activity dynamics and that the power
law STDP update rule described in section 2 is compatible with balanced
recurrent networks in the AI regime. However, we do not claim that this
property is unique to this STDP model. It would seem likely that any STDP
formulation that results in a unimodal equilibrium distribution of synaptic
weights would also be compatible, at least for some parameter range. This
is confirmed for a formulation of the Gütig et al. (2003) update rules in the
next section.

4.1.1 Survival of Strong Synapses. One of the main sources of interest in
STDP is its apparent ability to create neuronal assemblies (e.g., Izhikevich
et al., 2004). However, searching for a stable structure in a network with
8.1 × 108 excitatory-excitatory synapses presents a significant data analysis
problem in itself. To discover whether such assemblies are self-organizing in
the balanced recurrent network, we consider the persistence of the strongest
synapses in the network. If structure were developing, strong synapses
should stay strong or become even stronger. During the course of the simu-
lation, the outgoing plastic synapses of 900 neurons were monitored every
5 s, and those that were above a threshold of µ + 1.3σ (50.8 pA) of the equi-
librium distribution shown in Figure 4, were recorded (approximately the
strongest 10%). The persistence of strong synapses for various different ini-
tial times is shown in Figure 5A. For a group of synapses that are strong at a
given time, the number that remain strong decays exponentially with a time
constant of approximately 60 s, and almost none of an initial group remains
strong after 800 s. No synapses remained strong for longer than 1000 s,
although the simulation ran for 2000 s. This behavior was not systemati-
cally dependent on the time at which the initial population was defined, as
is demonstrated by the similar courses of the curves in Figure 5A. These
results suggest that structure is not developing in the balanced recurrent
network.

The survival statistics are qualitatively different for a low-connectivity
network, as can be seen in Figure 5B. Here, the number of neurons in the
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Figure 5: Persistence of strong synapses. (A) High-connectivity network. From
a total population of 8.1 × 106 synapses (see Figure 4) and for a given initial
time, approximately the 10% strongest synapses are recorded. The number of
these synapses that remain strong is plotted as a function of survival time. The
shading of the lines indicates the initial times: 100 s (palest gray curve) in steps
of 200 s until 1500 s (black curve). (B) Low-connectivity network. As in A, but
with a total population of 8.1 × 104 synapses and an earliest initial time of 500 s
(palest gray curve).

network was reduced to 900 excitatory and 225 inhibitory neurons while re-
taining a connection probability of 0.1. To compensate for the lower number
of synaptic inputs, the rate of the external input was increased to 34.66 Hz,
the peak current of the static excitatory synapses was increased by a factor
of 4 to 182.44 pA, and the peak current of the inhibitory synapses was a
factor of −18 larger than the excitatory synapses. In the case of the plastic
excitatory synapses, the scaling factor of 4 was applied postsynaptically, so
for the purposes of the STDP update, the synaptic weights stayed in the
range of approximately 30 to 70 pA. This permitted values of α = 1.109αp

and λ = 0.1 to be used, resulting in an STDP window function as close as
possible to that used for the full-sized network, and much the same activity
statistics (ν = 7.9 Hz, CVISI = 0.91, FSC = 8.6 (900 neurons)). The equilib-
rium weight distribution was unimodal, with a mean of 45.52 pA and a
standard deviation of 6.52 pA.

In this case, strong synapses are much more stable, with some remain-
ing strong for thousands of seconds. The decay of the number of strong
synapses does not vary systematically with the time at which the initial
population was defined, as was the case for the full-sized network. How-
ever, the decay is no longer well described by an exponential function, but
by a power law with an exponent of −1.02. Despite the longer endurance
of strong synapses, it still could not be said that structure is spontaneously
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developing in the network, as although the number of strong synapses did
not quite decay to zero over the 5000 s measuring period, the remainder
comprises less than 0.2% of the total number of plastic synapses. Similar
results are obtained when using the nearest-neighbor spike pairing scheme
described in section 2.3, resulting in a unimodal distribution with a mean of
45.6 pA, a standard deviation of 6.62 pA, and power law survival statistics
with an exponent of −0.93 (data not shown). The results are also robust with
respect to the formulation of the STDP update rules: power law STDP with
asymmetric time constants (τ− = 34 ms, τ+ = 14 ms, α = 0.048) and Gütig
et al. (2003) STDP (wmax = 100 pA, λ = 0.005, µ = 0.4, and α = 1.188) pro-
duce unimodal distributions, with means of 45.7 pA and 45.57 pA, standard
deviations of 7.13 pA and 5.17 pA, respectively, and power law survival
statistics with exponents of −0.62 and −1.3, respectively (data not shown).

These results show that the connectivity of a network has a significant
effect on the stability of individual weights, as strong synapses in the low-
connectivity networks persist for much longer periods than in the network
with biologically realistic connectivity. Further, they demonstrate that the
nondevelopment of structure is quite a robust observation. It is not restricted
to high-connectivity networks and does not depend critically on either our
specific formulation of the STDP update rules or the spike pairing scheme.

4.1.2 Sensitivity to Scaling of Depression. The value of α = 1.057αp was
determined through a tuning process to give a mean synaptic weight close
to the weight of excitatory synapses in the static network, and thus a similar
self-consistent firing rate. This raises the question of what the effect on the
network activity dynamics would be if α is chosen too high, leading to a
net depression of the synapses, or too low, leading to a net potentiation.
Clearly, any net change of the synaptic weights will lead to a change in
the correlation structure, which will affect the weights, and so on. A net-
work can be stable only if its weight distribution and correlation structure
are compatible, as in the network described above. How easy is this to
accomplish?

We found that if α is chosen 2% higher—α = 1.078αp—the network does
indeed settle to a new equilibrium, with a near-gaussian weight distribu-
tion at a slightly lower mean (µw = 45.33 pA) and a slightly increased stan-
dard deviation (σw = 4.1 pA). The network firing rate is, of course, lower,
ν = 3.4 Hz, and the activity is still in the AI regime (CVISI = 0.92, FSC = 3.9).
Interestingly, the network is in a more asynchronous state than either
the heterogeneous static network or the plastic network with α = 1.057αp

(FSC = 8.5), as reflected in its cross-correlogram (see Figure 6). The central
and side peaks are smaller in amplitude and less well defined, and the
difference in the cross-correlograms of this network and the static network
(see Figure 6, inset) shows clear structure around τ = 0. This lower degree
of synchrony is presumably due to the increased dominance of inhibition
in the local recurrent network as the excitatory weights decrease.
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Figure 6: Cross-correlogram of the spiking activity in the plastic balanced ran-
dom network with α = 1.078 αp, averaged over 500 pairs of neurons and 50 s, us-
ing a bin size of 0.1 ms. The recording was made after the weight distribution had
stabilized (950–1000 s). The inset shows the difference in the cross-correlograms
for the plastic and the heterogeneous static networks. Cross-correlograms cal-
culated as in Figure 3.

If α is chosen 2% lower—α = 1.035 αp—a very different picture emerges.
Up to 24 s, the mean of the synaptic weight distribution slowly increases to
45.83 pA, and its standard deviation decreases to 3.85 pA, retaining its near-
gaussian form. Over this period, the network firing rate increases smoothly
from 8 Hz to about 27 Hz. Between 24 s and 26 s, there is a sudden transition.
The network firing rate increases rapidly to 200 Hz (see Figure 7, inset), and
the synaptic weight distribution splinters into clusters (see Figure 7, main
panel).

Simultaneously, the network activity dynamics undergoes a transi-
tion. The global activity changes from asynchronous irregular firing (see
Figure 8A) to strong peaks of activity interspersed with periods of silence
(see Figure 8B). Within each peak, a highly regular pattern of activity builds
up within a few milliseconds and then decays abruptly, to be replaced with
a different pattern of activity (see Figure 8, lower panels).

These results show that α is a critical parameter for the configuration
of network and plasticity model investigated here and that the value of
α = 1.057αp is quite close to the bifurcation point. For values of α greater
than this, the network is stable, albeit with weaker synaptic weights and
consequently lower firing rates. Note that even extremely weak weights will
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Figure 7: Weight distribution and rate development in the plastic balanced
recurrent network with α = 1.035 αp. The gray histogram shows the distribution
of weights for the outgoing excitatory-excitatory synapses of 1000 neurons (i.e.,
9 × 106 synapses) after 24 s. The black histogram shows the weight distribution
for the same group of synapses after 30 s. The inset shows the average rate of
these neurons as a function of time.

not extinguish the network activity due to the external input. For values of
α lower than the bifurcation point, the network is unstable and leaves the
asynchronous irregular regime.

4.2 Stimulated Network. In section 4.1.1 it was demonstrated that if
an appropriate scaling of the plasticity window is chosen such that a self-
consistent rate ensues, no structure develops spontaneously. In this section,
we investigate whether structure can be induced in the network by gener-
ating systematic positive correlation in the network. The most obvious way
to accomplish this is to induce a group of neurons to fire synchronously.
The greater the number of inputs a neuron has from this group, the more
likely it is to fire shortly after the synchronous event.

4.2.1 Stimulus Protocol. A stimulus is applied to a group of neurons
(N = 500) at random intervals. At each stimulation event, a rectangular
pulse current is injected into each neuron, whereby the injection time for
each neuron is drawn from a gaussian distribution (σ = 0.5 ms). In this way,
there is no systematic relationship between the firing times of the stimulated
group during a stimulus event beyond that given by the gaussian. Due to
the random connectivity of the network, the number of connections Ksynch
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Figure 8: Activity dynamics in the plastic balanced recurrent network with
α = 1.035αp. (A) Instantaneous rate as a function of time between 22 s and
23 s for a sample of 1000 neurons with a bin size of 0.1 ms. (B) As in A, but
between 29 s and 30 s. Arrows indicate time periods treated in lower pan-
els. (C) Instantaneous rate as a function of time between 29.1 s and 29.106 s.
(D) Corresponding raster plot for 100 neurons. (E) As in C, but for the time
period 29.7 s to 29.706 s. (F) Corresponding raster plot; same neurons as in D.

each neuron receives from the stimulated group is binomially distributed
with a mean of 50. The higher the convergence a neuron has from this
group, the more likely it is to be affected by the stimulation. We therefore
define a high-convergence group with respect to the stimulated group, such
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Figure 9: Effect of stimulation on the network. Raster plot for 100 arbitrarily in-
dexed neurons from the following populations: (A) stimulated group (N = 500),
(B) high-convergence group (N = 568, Ksynch ≥ 69), (C) random-convergence
group (N = 1000). The stimulus consists of a rectangular pulse current of am-
plitude 6840 pA and duration 0.1 ms at irregular intervals with a frequency of
3 Hz. For each stimulation event, the injection times for each neuron are drawn
from a gaussian distribution with a standard deviation of 0.5 ms.

that Ksynch ≥ 69. This value was chosen as it results in a high-convergence
group of approximately the same size as the stimulated group (N = 568).
The spiking activity for the stimulated group (see Figure 9A), the high-
convergence group (see Figure 9B), and a group of neurons (N = 1000) with
random convergences (see Figure 9C) shows that although the stimulus
has a strong effect within the stimulated group, its initial effect on the
high-convergence group is only moderate and its effect on the random-
convergence group weaker still.

4.2.2 Activity Development of Stimulus-Driven Network. Initially, it seems
as if the stimulus has a catastrophic effect on the stability of the network. In
Figure 10A, a sudden rate transition can be seen at 224 s. All three recorded
neuron populations reach rates of over 200 Hz. A closer inspection of the
spiking activity at the transition point (see Figures 10C and 10D) yields
some insight. A strong burst in the stimulated group triggers an oscillation
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Figure 10: Activity development in the stimulated plastic network: (A) Average
rate as a function of time (bin size 1 s) for stimulated group, pale gray curve;
high-convergence group, dark gray curve; random-convergence group, solid
black curve. The dashed black line indicates the equilibrium rate for the unstim-
ulated plastic network. (B) As in A, but with no connections permitted within
the stimulated group. (C) Raster plot for stimulated group during activity state
transition, arbitrary neuron indices. (D) Raster plot for random-convergence
group during activity state transition, arbitrary neuron indices.

in the random-convergence group (which is representative for the activ-
ity in the whole network). This synfire explosion was first reported by
Mehring, Hehl, Kubo, Diesmann, & Aertsen (2003). Here, however, the ef-
fect is magnified rather than dying away, as the network correlation and the
synaptic strengths have a positive feedback relationship through the STDP
rule. The emergent activity is characterized by bursts of strongly patterned
activity separated by periods of no activity, as was also observed for the
unstimulated network with α = 1.035αp (see Figure 8).

Quite apart from its consequences for the network activity, the trigger-
ing of the synfire explosion is in itself an interesting effect, given that the
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stimulated group intially had only a weak effect on the network (compare
Figures 9A and 9C). This is partly due to the implementation of synaptic
delays. As neurons were connected randomly, the neurons in the stimulated
group also receive input from other neurons within that group. Since the
synaptic delay was implemented as dendritic rather than axonal, when two
neurons fire simultaneously, the presynaptic spike arrives at the synapse be-
fore the postsynaptic spike. This causes a systematic increase in the weights
of the intragroup synapses when a synchronous stimulus is repeatedly ap-
plied. Although in general the response to the stimulus within the group
is weakened, as will be discussed below, this increase of weights can oc-
casionally cause an amplification of the response. In this case, more of its
neurons fire within a few milliseconds, which naturally has a stronger effect
on the rest of the network. If the network is connected such that there are
no connections between neurons belonginging to the stimulated group, the
amplification does not take place, and no synfire explosion is triggered for
a stimulated group of this size (see Figure 10B). However, increasing the
group size triggers a synfire explosion without the amplifying effects of the
intragroup synapses: for a group size of 600 stimulated neurons, this occurs
after 249 s; for a group size of 700 after 127 s; and for a group size of 800
after only 7 s (data not shown).

Irrespective of whether a synfire explosion was triggered, a notable fea-
ture of the network behavior is the significant reduction in the rate of the
stimulated group. This change in rate can be explained with reference to the
changes in the synaptic weight distributions (see Figure 11A). The positive
correlation between the stimulated group and the high-convergence and
random-convergence groups corresponds to a systematic negative correla-
tion from the perspective of the incoming synapses of the stimulated group.
As a consequence, the means of the distributions of synaptic weights from
the random-convergence and high-convergence groups to the stimulated
group decrease from the mean weight determined in section 4.1 by 13.3%
and 21.1%, respectively. This represents a significant reduction in the in-
put received by the neurons of the stimulated group and causes them to
fire much less frequently. Note that this effect can be generalized to any
stimulus that creates a systematic positive correlation between a stimulated
group and another group of neurons receiving input from it.

This decoupling of the stimulated group from the rest of the network
counteracts the development of structure observed in the development of
the weights of the outgoing synapses of the simulated group. The means of
the distributions from the stimulated group to the random-convergence and
high-convergence groups increase from the mean weight value determined
in section 4.1 by 13.8% and 25.5%, respectively. Over the same period, the
mean of the synaptic weights unconnected with the stimulated group in-
creased by just 0.2%. Moreover, a clear relationship can be seen between
the degree of convergence a given neuron has from the stimulated group
and the mean weight of those synapses (see Figure 11B). Up to about the
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Figure 11: Development of synaptic weights in the stimulated plastic network,
with no connections within the stimulated group. (A) Distribution of synap-
tic weights between different neuron populations after 400 s: stimulated group
to high-convergence group, solid black curve; stimulated group to random-
convergence group, dashed black curve; high-convergence group to stimu-
lated group, solid dark gray curve; random-convergence group to stimulated
group, dashed dark gray curve. The pale gray curve indicates the distribu-
tion of synaptic weights for synapses unconnected to the stimulated group.
(B) Average synaptic weight after 400 s as a function of convergence from the
stimulated group (dots) and the high-convergence group (crosses). The vertical
black line indicates the cut-off point for membership in the high-convergence
group (Ksynch ≥ 69), and the gray line is a linear fit to the data below this point.

convergence chosen as the cut-off point for membership in the high-
convergence group, the dependence of the average synaptic weight on
the degree of convergence is well described by a linear relationship. In-
terestingly, beyond this point, the average synaptic weight increases much
faster than the linear prediction. Although this suggests that a develop-
ment of functional structure is occurring, such that the volley of near-
synchronous spikes is reliably transferred from the stimulated group to
the high-convergence group, the development of the weights of the outgo-
ing synapses of the high-convergence group does not support this. Even
after 400 s of repeated stimulation, no increase of the average synaptic
weight as a function of the convergence from the high-convergence group
can be observed. Clearly, the high-convergence group does not echo the
stimulus sufficiently reliably as to have a corresponding effect on its own
downstream high-convergence group, even though the synaptic weights
between the stimulated group and the high-convergence group have in-
creased so significantly.

The failure of the stimulated group to drive the high-convergence group
effectively, despite the increased synaptic weights, can also be seen in the
cross-correlogram of their spiking activity in Figure 12. Ideally, we would
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Figure 12: Expected and actual correlation development. (A) Initial correlation:
cross-correlation in the static network between the stimulated group and an
external group with the same convergence with respect to the stimulated group
and the rest of the network as the high-convergence group; synaptic weights
drawn from distribution shown in Figure 4B. Averaged over 500 pairs of neurons
and 50 s, using a bin size of 0.1 ms. (B) Expected final correlation: as in A,
but synaptic weights for the external group are drawn from the appropiate
distributions shown in Figure 11A. (C) Actual final correlation: cross-correlation
between the stimulated group and the high-convergence group in the plastic
network after stabilization of rates. Averaged over 500 pairs of neurons between
300 to 400 s with a bin size of 0.1 ms. Cross-correlograms calculated as in
Figure 3.

like to compare the cross-correlation between the stimulated group and
the high-convergence group at the beginning and end of the simulation.
However, the rates are changing too quickly at the beginning for a cross-
correlation to be meaningful. In order to gain some insight into the initial
cross-correlation between the stimulated and the high-convergence groups,
the static network with heterogeneous weights was used to provide input
to an external group of 500 neurons. This group was connected such that
it had the same convergence with respect to the stimulated group and the
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rest of the network as the high-convergence group, with synaptic weights
drawn from the equilibrium distribution shown in Figure 4B. The static
network was then stimulated as described in section 4.2.1, to give a rea-
sonable idea of the cross-correlation structure between the stimulated and
high-convergence groups in the plastic network at the beginning of the
simulation. This is depicted in Figure 12A. To gain insight into how the
cross-correlation should have changed as a result of the increased synaptic
weights between the stimulated group and the high-convergence group,
the experiment was repeated with synaptic weights for the external group
drawn from the appropriate distributions shown in Figure 11A. This gives
a reasonable idea of the expected cross-correlation at the end of the 400 s
simulation, under the assumption that the rate of the stimulated group re-
tains its initial value. The expected cross-correlation is shown in Figure 12B,
and a significant increase from the initial cross-correlation is observable.
However, the actual cross-correlation between the stimulated and high-
convergence groups at the end of the plastic network simulation, shown in
Figure 12C, instead indicates a significant reduction in correlation from the
initial condition. This suggests that although the initial strong correlation
between the stimulated and high-convergence groups causes a systematic
increase in the synaptic weights, which should increase the reliability of
transferral of the near-synchronous volley of spikes and thus induce devel-
opment in the outgoing synapses of the high-convergence group, this effect
is entirely counteracted by the decoupling of the stimulated group from
the rest of the network, which lowers the mean membrane potential of the
stimulated group and thereby its responsiveness to the stimulus.

5 Discussion

5.1 Compatibility of STDP with the Balanced Random Network
Model. We have shown that in a network with biologically realistic con-
nectivity and sparseness, the weight dynamics of excitatory STDP synapses
and the network dynamics can reach a mutual equilibrium. The equilibrium
weight distribution is unimodal, and the network dynamics is that of a bal-
anced random network in the asynchronous irregular regime. Specifically,
the dynamics is almost identical to that of a static network with weights
drawn from the equilibrium distribution of the plastic network. No spon-
taneous development of structure can be observed, as although the weight
distribution is stable, the weights of individual synapses are not. A strong
synapse does not stay strong indefinitely, but decays with a characteris-
tic time constant and is replaced by other, previously weak, synapses. In
other words, the number of strong synapses remains essentially constant,
but the membership to this group is permanently in flux. Smaller networks
with lower connectivity did not exhibit spontaneous development of struc-
ture either, although strong synapses persisted much longer, with a power
law rather than exponential decay. The qualitatively different survival
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statistics demonstrate the importance of investigating STDP in networks
with biologically realistic connectivity.

These results are in contrast to those of Izhikevich et al. (2004), where
the development of neuronal groups was observed, but also in contrast to
those of Iglesias et al. (2005), where a principal feature was the systematic
pruning of the majority of synapses. It is difficult to determine exactly why
the results are so divergent, as there are so many differences in the network,
neuron, and plasticity models used. However, we have demonstrated the
robustness of our findings. Neither a change in the connectivity in the
network, nor a change in the spike pairing scheme, nor even in the specific
formulation of STDP altered the essential finding that structure does not
spontaneously develop in the balanced random networks studied.

In order to achieve a stable weight distribution and network activity with
the desired mean weight and activity statistics, it was necessary to adjust
the strength of depressing increments, while keeping the strength of po-
tentiating increments constant, to compensate for the nonvanishing cross-
correlation brought about by network oscillations. This tuning amounts to
a 6% increase in the strength of depressing increments, compared to that
required to maintain the desired mean weight with purely Poissonian firing
statistics. Interestingly, this adjustment brings the strength of a depressing
increment closer to the value of α = 0.11 determined from the experimen-
tal data in section 2.2: the analytical value for Poissonian statistics is 8%
lower, the adjusted value only 3% lower than the experimental value. If
the strength of depressing increments is increased further in the direction
of the experimental value, we show that a new stable state is found at a
lower mean weight and with a lower degree of synchrony. In contrast, if
the strength is decreased, no new stable state is reached within the asyn-
chronous irregular regime. After an initial smooth rate increase, a sudden
transition can be observed in the activity dynamics and the weight distri-
bution. The activity is characterized by bursts of strongly patterned activity
at high rates, interspersed with network silence. The weight distribution,
which remains unimodal until the transition, splits into several distinct
clusters.

5.2 Effects of Induced Synchronous Activity. We investigated the ef-
fects of irregular but synchronous stimuli on a group of neurons within
the stable plastic network. If the stimulus is too strong due to amplification
within the group or simply because the group size is too large, a synfire
explosion is triggered. Unlike the behavior observed for a static network
(Mehring et al., 2003), this explosion does not die out but drives the network
into a pathological state. If the stimulus is not strong enough to trigger a
synfire explosion, the weights of the outgoing synapses of the stimulated
group develop as expected: a net increase is seen, particularly for synapses
where the postsynaptic neuron has a high degree of convergence from the
stimulated group. However, the causal relationship between the activity
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of the stimulated group and the rest of the network is an acausal relation-
ship when viewed from the perspective of the incoming synapses of the
stimulated group. These synapses are therefore systematically weakened,
which leads to a dramatic fall in the firing rate of the stimulated group.
This loss of background input reduces their response to the stimulation,
with the end result that the correlation between the stimulated group and
the high-convergence group is, in fact, less after 400 s than at the beginning
of the simulation, despite the increase in weights. No functional structure
is developed under these conditions: the high-convergence group does not
echo the stimulus strongly enough to strengthen the synapses of its own
downstream high-convergence group.

5.3 Power Law Formulation of STDP. The general framework for nor-
malized STDP update rules established by Gütig et al. (2003) has four free
parameters: the maximum weight wmax, the asymmetry parameter α, the
step size λ, and the exponent of the weight dependence µ. The time inten-
sity of the simulation study is such that a systematic investigation of all
these parameters was unfeasible; therefore, a reexamination of the experi-
mental data of Bi and Poo (1998) was undertaken in order to constrain this
framework as tightly as possible. However, when the absolute rather than
relative changes in EPSC are considered as a function of the initial EPSC am-
plitude, a power law relationship emerges that cannot be expressed within
the Gütig et al. framework. This novel update rule is a better fit to the data
than either additive (Song et al., 2000; van Rossum et al., 2000; Izhikevich
et al., 2004) or multiplicative rules (Rubin et al., 2001), or anything in be-
tween (Gütig et al., 2003). A property of our formulation of STDP is that the
absolute potentiation of very weak synapses is small rather than maximal
(for multiplicative rules) or equal to the absolute potentiation of a stronger
synapse (for additive rules). This is a clear prediction that can be tested
experimentally to distinguish between the available models more conclu-
sively. We combined this formulation of the STDP update rules with an
all-to-all spike pairing scheme, which we showed has a tendency to correct
rate disparities, in contrast with a nearest-neighbor scheme, which, in the
absence of additional stabilization mechanisms, tends to amplify any such
disparities.

5.4 Limitations and Perspectives. Inevitably, this study was limited
by the long duration of the simulations. The weight dynamics involve
timescales up to three orders of magnitude longer than the activity dynam-
ics in a static network: the transient of the weight distribution investigated
in section 4.1 lasted about 200 s, whereas the transient in activity dynamics
before a stable asynchronous irregular state is established in a static net-
work is more like 200 ms. This is the main problem with such simulations,
rather than the increased computational complexity of implementing plas-
tic synapses; this slows our network simulations by a factor of less than
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10. Currently, a 1000 s simulation of the unstimulated network at 8.8 Hz
requires about 60 hours of computational time on our PC cluster (20 × 2
processors, AMD Opteron 2.4 GHz, Dolphin/Scali interconnect). Simulat-
ing networks with reduced connectivity and scaled synapses ameliorated
the problem, but at the cost of changing the survival statistics. It has yet
to be established to what extent the network can be reduced from its bio-
logically realistic scale while maintaining qualitatively the same behavior.
Regardless of whether this can be achieved, there is a clear need for ana-
lytical approaches that simultaneously account for plasticity and activity
dynamics.

Given these limitations, there are nonetheless clear indications of how
this work can be extended to investigate STDP in a balanced recurrent net-
work more systematically. The discovery that the implementation of delays
as purely dendritic can trigger a synfire explosion by strengthening the
synapses within a stimulated group suggests that the distribution of prop-
agation delay between the axon and the dendrite is potentially a crucial
parameter for the network dynamics. Future work will need to determine
to what extent the pathological state exhibited by the network as a result
of a synfire explosion or insufficiently strong depression is affected by an
increased proportion of axonal delay. Moreover, the possibility that the
patterns observed in these states are at least partially artifacts of discrete
time step simulation cannot be ruled out. We are currently investigating
efficient methods of incorporating continuous spike times within a discrete
time simulation scheme (Morrison, Straube, Plesser, & Diesmann, 2007),
which should allow clarification of this issue. Another major area for de-
velopment is the relative simplicity of the plasticity model used. It is, of
course, necessary to start with simple models; otherwise, when confronted
with complex behavior, it is impossible to say which aspect of the model is
causing what. However, recent research reveals a rich variety of plasticity
expression such as suppression (Froemke & Dan, 2002), activity-dependent
postsynaptic homeostasis (Turrigiano et al., 1998), and nonlinear interac-
tions between potentiation and depression (Wang et al., 2005). These effects
may turn out to have fundamental consequences for network behavior. The
model used also incorporates no upper bound on synaptic strength, which
seems unbiological. However, as no upper bound could be extracted from
the experimental data of Bi and Poo (1998), further investigation is required
to establish a reasonable saturation behavior for the power law update rule
proposed here.

If structure is to develop in a balanced random network as a response to
synchronous stimuli, the stimulated group must continue to receive enough
background input so that its response to the stimulus does not dimin-
ish over time. To achieve this, one or both of the model components in
this study must be adjusted. A natural adjustment to the plasticity model
would be to incorporate postsynaptic activity dependent homeostasis as
used in van Rossum et al. (2000). This would increase the weights of the
incoming synapses of the stimulated group as a response to its falling rate.
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Alternatively, the connectivity in the network model could be adjusted.
First, in the model used here, all propagation delays are identical, and each
neuron has the same number of incoming synapses. Introducing hetero-
geneities in these quantities has been shown to reduce network oscillations
(Brunel, 2000; Tetzlaff et al., 2005), which might prevent the network from
entering a pathological state under stronger stimulation than was possible
to use here. Second, a connection pattern resulting in a long-tailed rather
than binomial convergence distribution for the stimulated group would
lessen the acausal correlation between the embedding network and the
stimulated group, thus reducing the drop in the mean weight of its incom-
ing synapses.

Appendix: Algorithmic Implementation of STDP

The following implementation assumes that a synapse that connects the
axon of neuron i to the dendrite of neuron j is stored in a list belonging to i .
In the case of a distributed application, this list is assumed to be physically
on the machine of the postsynaptic neuron, j (see Morrison et al., 2005).
Each list of postsynaptic targets maintains two variables: told, the time of the
last presynaptic spike, and K+, which describes the current time-dependent
weighting of the STDP update rule for potentiation. Each synapse maintains
its current weight w j i and its synaptic delay di = d A

i + d D
i , which is com-

posed of its axonal delay d A
i and its dendritic delay d D

i , such that d D
i ≥ d A

i .
Note that these propagation delays are taken into account when calculating
the difference in time between presynaptic and postsynaptic spikes: spike
timing is calculated from the perspective of the synapse and not the soma
(see Debanne et al., 1998). Additionally, the synapse is equipped with two
functions F+(w) and F−(w), which perform the weight-dependent update
for potentiation and depression, respectively. For example, in the case of
power law STDP, F−(w) = λαw. The target list performs its weight updates
and sends spikes to its postsynaptic neurons when its spike method is
invoked for a presynaptic spike at time t:

spike(t):

for each postsynaptic neuron j:

history←j.get history(told + dAj − dDj,t + dAj − dDj)

for each spike tj in history:

dt← (tj + dDj) − (told + dAj)
if dt �= 0:

wj ← wj + F+(wj) · K+ · exp(−dt/tau)
K− ←j.get K value(t + dAi − dDi)
wj ← wj − F−(wj) · K−
send spike (wj, dj) to neuron j

K+ ← K+ · exp(−(t − told)/tau) + 1

told ← t
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The postsynaptic neuron j maintains the variables told, containing its last
spike, K−, which describes the current time-dependent weighting of the
STDP update rule for depression, and Nsyn, the number of STDP incoming
synapses. In addition, a dynamic data structure spike register is required,
which stores spike information in the form of tuples: (tsp,Ksp,countersp),
where tsp is the spike time, Ksp is the value of K− at time tsp, and
countersp counts how many times the spike information has been accessed
by synapses. When neuron j spikes at time t, the spike register has to be
updated:

update register(t):

K− ← K− · exp(−(t − told)/tau) + 1
while length of spike register ≥ 1:

if countersp ≥ Nsyn:

remove first element

store (t,K−,0) as last element

told ← t

To enable the synapses to access this information, two other methods have
to be available: get history(t1, t2), which returns the spike times recorded
in the spike register in the range (t1, t2], and get K value(t), which returns
the value of K− for the time t. They may be implemented as follows:

get history(t1, t2):

starting at beginning of spike register:

while tsp ≤ t1:

move to next element

history←tsp
countersp ← countersp + 1

while tsp ≤ t2:

append tsp to history

countersp ← countersp + 1

move to next element

return history

get K value(t):

starting at end of spike register:

while tsp ≥ t:

move to previous element

return Ksp · exp(−(t − tsp)/tau)

This implementation permits a wide class of STDP models to be sim-
ulated in a distributed application. Maintaining a spike register means
that a neuron does not require knowledge of the locations of its incoming
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synapses in order to update their weights when it spikes; synaptic weights
are updated only when a presynaptic spike occurs. Using the K± variables
to implement the sums of exponential functions and tracking countersp, the
number of times synapses have accessed a particular spike, allows spike
information that is no longer relevant to be discarded, thus keeping the
number of retained spikes to a minimum. This means that the memory
required does not increase for longer simulations, and the list operations in
get history remain fast.

This template algorithm can be trivially extended to models that re-
quire clipping of the weights at upper and lower boundaries or where the
presynaptic and postsynaptic time constants differ. Different spike pairing
schemes can be investigated by changing the way the K± variables are up-
dated. With more modifications, it can also be extended to more complex
models such as the suppression model put forward by Froemke and Dan
(2002).

The biggest limitation of the algorithm is the requirement that d D
i ≥

d A
i . This is necessary to ensure causality is not violated—the postsynaptic

neuron must not be required to give information on its future state. In this
article, for simplicity, the assumption was made that the delay is purely
dendritic: d D

i = di , d A
i = 0. Using the above algorithm, other distributions

of the delay between the dendrite and the axon can be investigated up to
the limit of d D

i = d A
i = di/2. This limitation can be circumvented, but at the

cost of more complicated techniques, essentially queueing the event until
the postsynaptic neuron has reached a state where the required information
is available.
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Braitenberg, V., & Schüz, A. (1998). Cortex: Statistics and geometry of neuronal connec-
tivity (2nd ed.). Berlin: Springer-Verlag.

Brunel, N. (2000). Dynamics of sparsely connected networks of excitatory and in-
hibitory spiking neurons. J. Comput. Neurosci., 8(3), 183–208.

Brunel, N., & Hakim, V. (1999). Fast global oscillations in networks of integrate-and-
fire neurons with low firing rates. Neural Comput., 11(7), 1621–1671.

Burkitt, A. N., Meffin, H., & Grayden, D. B. (2004). Spike-timing-dependent plas-
ticity: The relationship to rate-based learning for models with weight dynamics
determined by a stable fixed point. Neural Comput., 16, 885–940.
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