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Conventional approach to quantum mechanics in phase space, (¢,p), is to take the
operator based quantum mechanics of Schrodinger, or an equivalent, and assign a
c-number function in phase space to it. We propose to begin with a higher level of
abstraction, in which the independence and the symmetric role of ¢ and p is main-
tained throughout, and at once arrive at phase space state functions. Upon reduction
to the g- or p-space the proposed formalism gives the conventional quantum me-
chanics, however, with a definite rule for ordering of factors of noncommuting
observables. Further conceptual and practical merits of the formalism are demon-
strated throughout the text. © 2006 American Institute of Physics.

[DOL: 10.1063/1.2345109]

I. INTRODUCTION

Wigner’s 1932 initiative' is a reformulation of the operator based quantum theory of
Schrodinger in the language of c-number distribution functions in a phase space. His prescription,
however, turns out to have a feature extra to what one finds in Schrédinger’s theory. There is
nothing in the founding principles of the operator based theory to prescribe a rule for ordering of
the factors of noncommuting operators in a product. In contrast, Wigner’s formalism, upon reduc-
tion from phase space to the configuration space, acquires Weyl’s ordering,z’3 How and at what
stage, in going from Schrodinger’s state functions in configuration space to those of Wigner in
phase space and again coming back to the configuration space, acquires Weyl’s ordering creep in?
This feature is not unique to Wigner’s functions. Other distributions exist in the literature, e.g.,
Kirkwood,4 Husimi,5 Margenau and Hill,6 Torres-Vega and Frederick,L9 Liet al.,lo de Gosson,“’12
etc. Each of them carries its own ordering rule, with no precedence in the configuration space
formalism. Can one conjecture that the phase space formulations of quantum mechanics are more
complete than their configuration space counterpart, because of their built-in ordering rules? If so,
there should be a way to arrive at phase space formulations without reference to the conventional
operator based theory. Here we argue that in the classical dynamics and classical statistical dy-
namics (Liouville’s equation) the generalized coordinates and momenta, g and p, respectively,
play symmetric and more importantly, independent roles. In the operator based quantum theory
one or the other loses its identity at the expense of the other and the formalism reduces to one in
either ¢ or p space. One could avoid this by carrying the ¢ and p formalisms concomitantly and at
once arrive at state functions in gp spaces. The so-obtained state functions are the gp representa-
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tion of the mixed states of quantum statistical mechanics. The operator based theory emerges as a
special case of this general one, but this time with a definite ordering rule for noncommutative
operators. The rule depends on the nature of the ¢ and p variables, adopted initially.

Il. EXTENSION OF THE CLASSICAL DYNAMICS

Let g={q;(r),i=1,...,N} be the collection of the generalized coordinates describing the state
of motion of a dynamical system. It is customary to assign a Lagrangian, L%(q,q), to the system,
define the conjugate momenta, p=dL9/dq, and construct the H(q,p)=¢p—L9. One may do this the
other way around. Begin with a given H(q,p) and find L(gq,q) as a solution of the following
differential equation;

aL?\  aLe
H\q,— | -¢—+L?=0. (1)

One may, however, carry out the same procedure with ¢ replaced by p and arrive at a LP(p,p)
satisfying the differential equation

arr L7
H| ——.p|+p——-L1"=0. (2)
Jap ap
The use of L? to study the evolution of a dynamical system is not a common practice. But it is a
possibility and has precedence.13 There is no bar to employing the two alternatives simultaneously.

We follow Sobouti and Nasiri'* (hereafter, paper I) and define the “extended Lagrangian”

L(q.q:p.p) == qp —qp + L (q.q4) + L (p.p). (3)

The first two terms on the right-hand side constitute a total time derivative and are introduced for
later convenience. One may now write down the Euler-Lagrange equations for ¢ and p,

daoL 9L daL? L1
e ) (4a)
dtdg dg dtog dq

doL oL dorr arr
—— -—=0 (4b)

dtogp dp deaop dp
Equation (4a) is the conventional equation of motion in ¢ space. With preassigned initial values
q(ty) and ¢(1y) at t, it can be solved for the orbits ¢(r) in ¢ space. Similarly, with given initial
values p(z,) and p(1,), Eq. (4b) can be solved for the orbits p(¢) in the p space. The conditions for
g and p orbits to represent the same state of motion of the system are p(t,)=dJL?/ g 1, and g(zo)
=3L"/o7p|,0. Such a state of motion will be referred to as a “pure state.” Otherwise it will be called
a “mixed state” of motion. The nomenclature is from the statistical quantum mechanics and it will
be seen later that they imply the same notions as therein. On a pure state p and ¢ are initially
canonically conjugate pairs and it is shown in paper I that once they are canonically conjugate at
one time they remain so for all times. On the other hand there are no restrictions on the initial
values of g and p on mixed states. Therefore, g(7) and p(¢) remain unrelated and evolve indepen-
dently. The existence of the extended Lagrangian L(gq,q;p,p), however, permits the following
“extended momenta” to be defined:

Ty= .= —Ds (5a)
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mE=— =g (5b)

These in turn allow an “extended Hamiltonian” to be defined through the following Legendre
transformation;
H(q’ﬂ-q;p"ﬂ-p):q.'n-q"'p-ﬂ-p_ﬁ(q’q;p»p.)' (6)

To eliminate ¢ and p from H one substitutes (a) for £ from Eq. (3), (b) for L7 and L” from Egs.
(1) and (2), and (c) for dL9/dq and JL”/dp from Egs. (5a) and (5b). One arrives at

" "
I[Hl_H}’ -

H(g,m, ;p,m,)=H(q,p+m,)—H(qg+ m,,p)= - p
(¢, m,:p,m,) =H(q,p+ m,) —H(q + m,,p) %n! PR

where the derivatives are to be evaluated at (g,p). We leave it to the reader to familiarize him/

herself with H by writing down four Hamilton’s equations for ¢, 77"[1, p, and #p. Here, the condi-
tion for pure state motions is 7,(y)=,(ty)) =0, and once they are initially zero they remain so for
all times. Then by Egs. (5a) and (5b) ¢ and p turn into canonically conjugate pairs for all times
(paper I). To summarize, for any dynamical system we introduce an extended phase space,
(g, TP, 7p), extended momenta, Lagrangians, and Hamiltonians. All concepts and procedures of
the conventional dynamics are extendible to this extended dynamics. Of particular relevance to
this paper, which will be referred to shortly, are: (1) canonical transformations from one set of
variables (g, ,;p,m,) to another, and (2) Poisson’s brackets extended as

IF 3G OF iG OF IG  OF iG

{F,G}= + .
dq dw, dm,dq dpdm, dJdm,dp

(8)

lll. QUANTUM DYNAMICS IN qgp SPACE

Now that we have the extended the Hamiltonian of Eq. (7) we may construct a quantum
mechanics in gp space. We do this on the following premises.

(1) Let X be the function space of all integrable complex functions x(¢,p). Let ¢, m,,p, and,
7, be operators on X, satisfying the commutation rules

lg.m)=lp.m,]=it, lq.p]=[msm]=lq.m,]=[p.m]=0. )

These are the fundamental Poisson brackets of Eq. (8), promoted to commutation brackets by
Dirac’s prescription. Note the manifest independence of ¢ and p in the vanishing of their com-
mutation brackets.

(2) By virtue of Eq. (9), H is now an operator on X. Let x(¢q,p,r) € X be a state function
satisfying the Schrodinger-type equation

: aX < . &> ( : a )j|
h—"=Hy=|H|lgp-—it—|-Hlg-ih —, . 10
ih X [ q.p—i py q-i &pp X (10)

(3) Let the rule to evaluate the expectation values of an observable O(q,p), a real c-number
operator on X, be

(O(gq.p)) = f O(g.p)Re xdgqdp = % f 0(q.p)(x + x)dqdp. (11)

We will return to this averaging rule shortly, and revise it. The logic behind it, however, is to
be noted, the averages of observables should be real. In what follows we demonstrate that (1) the
formalism so designed is a theory of quantum ensembles in phase space. Its pure state case is the
conventional quantum mechanics, however, with a definite ordering rule accompanying it. (2) It
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can be transformed to other phase space formalisms, including to that of Wigner, by suitable
unitary or similarity transformations on A. The latter in turn originates from suitable canonical
transformations from one extended phase space coordinate to another.

A. Solutions of Eq. (10)

To begin with, y is of the form

x(q.p) = F(q.p)e” 77" (12)

The exponential factor is a consequence of the total time derivative, —d(gp)/dt in Eq. (3). It is
easily verified that

d oF .
—ih— |x=ih —e PV, (13a)
4 q X Jq
d JF .
g—ih— |x=ih —e P, (13b)
dp Jdp

Substitution of Egs. (13) and (12) in Eq. (10) gives

JF d d
ih—= {H(q,—iﬁ —) —H(—ih —,p)
ot dq dp

The operators on the right-hand side of Eq. (14) are recognized as the Hamiltonians of the
conventional quantum mechanics, the first in ¢ and the second in p representation. Thus, one
obtains the superposition of the separable solutions

F. (14)

X(q,l’,t) = 2 Aaﬁl/ja(q’t)(b;(p’t)e_ipq/ﬁ’ (15)
a.p
where

J J
h%:H( ,-ma—)%, (162)

q

J J

iﬁ%=y<iﬁ£,p>¢ﬁ. (16b)

To each #,(q) there corresponds a ¢,(p) that are Fourier transforms of each other,

(q) = )N/2 j ¢a(p)elpq/ﬁdp (17)

(Zﬁ

where N is the number of degrees of freedom of the system.
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B. The averaging rule revisited: Acceptable state functions

Let Q(g) be an observable represented by a real polynomial or series in ¢. Its matrix repre-
sentation, Q in either y—, -, or ¢-basis is Hermitian. Thus

0pa= f U(0)Q(q)5(p)e P dpdg

= f Y50 Q(q) a(g)dg = J ¢Z(p)Q<i h %) bo(p)dp = Q5. (18)

where we have used the fact that ¢ and ¢ bases are the Fourier transforms of each other. The
coefficient (2774)™V? is suppressed for brevity. The expectation value of Q, by Eq. (11), now
becomes

1 . A
<Q>=5fQ(X+X)ded=%tr[Q(A+AT)], (19)

where A is the matrix of A,p of Eq. (15). This gives the freedom of choosing A=A" and of
simplifying Eq. (11) to read (Q)=JQxdpdg=tr(QA). Choosing Q(g)=1, imposes the further re-
striction tr A=1. Requiring the averages of all positive definite functions of g to be positive still
restricts A to be a positive definite matrix. Had one chosen a differentiable function P(p) instead
of Q(q), one still would have arrived at the same requirements for A.To summarize, y of Eq. (15)

is a physically acceptable solution if
A=A, positive definite, and rA=1. (20)

With this provision the averaging rule of Eq. (11) for Q(g)+ P(p) reduces to

<Q(q)+P(p)>=f(Q+P)Xdeq- 21

For a product Q(g)P(p), by the prescription of Eq. (11) and with the restrictions of Eq. (20) on A,
one has
A An 1 Aaa Aaa 1 An Aaa
(QP)=Re tr(QPA) = t(QPA + APQ) =1t (0P + PO)A |, (22)
where Q and P are the matrix representations of Q(g) and P(p) as in Eq. (18). Translation of this
to the g space language, say, is

(0P)= S Aus f w};(q>[Q<q>P<— ih 8—2) + P(— in &%)Q@] Dudp. (23)

Thus, upon reduction of the formalism of the present paper to that of the g-space, the ordering rule
associated with a product Q(q)P(p) is the symmetric ordering. It has emerged from the formalism
itself, unlike the ad hoc ordering rules of the conventional quantum mechanics.

IV. MORE ABOUT EQ. (10)

It was stated earlier that the proposed dynamics is essentially that of the ensembles. Here we
elaborate on this, and show that (1) the classical limit of the theory is Liouville’s equation that
governs the dynamics of classical ensembles. (2) Its pure state case is Schrodinger’s operator
based theory. (3) In its full generality the theory gives von Neumann’s density matrix and the
evolution equation associated with it.
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A. Classical correspondence

In Eq. (10) expanding the Hamiltonian operators about (g,p), and retaining only the first
terms in the expansion, gives

+ ——=—=0. (24)
dt dpdq Jdpdp dt

This is the Liouville equation for the distribution function of classical ensembles. Its most general
solutions are x[¢(z),p(1)], where ¢(¢) and p(z) are the classical trajectories in ¢ and p spaces. The
two trajectories may represent the same state of motion if they satisfy the conditions of initial
canonical conjugacy narrated below Eq. (4). Otherwise, they remain independent and evolve
independently. It is this classical notion of independence that we have carried through to the
quantum formalism. Let us also note that the reduction of the phase space evolution equation to
the classical Liouville’s equation is a common feature of all such formalisms.

B. Schrédinger’s case

Allowance for only one term in Eq. (15) reproduces the conventional quantum mechanics in
all its details. Thus

x=Wq) ¢ (p)e e, (25a)
T
ih o —H(q, lhaq)l//, (25b)
¢ and ¢ Fourier transforms of each other, (25¢)
f xdpdg =f ¢ ydg =f ¢ Ppdp=1, (25d)
1 N 0 0
(Q@PP) =7 f W {p<— ifi ;)Q(q) + Q(q)P<— ifi —>]l/qu- (25¢)
q dq

Heisenberg’s uncertainty principle follows immediately from Eq. (25) that one may find in stan-
dard texts in quantum mechanics. The ordering rule of Eq. (25¢) is, however, the added feature of
the theory.

C. Density matrix and von Neumann’s equation

The state function of Eq. (15), as it stands represents the state of an ensemble in a mixed state.
If the matrix A is diagonalized to A ,5=A,8,4, x Teduces to X:EAaz,banZe‘i”q/h. Upon integration
over g or p one immediately recognizes A, as the probability of the system to be in the state
P,(q,t) or ¢, (p,r). One may, however, do better. Let {¢,(g)} be a complete orthonormal time
independent basis set, and {¢,(p)} be its Fourier replica. These basis sets are not required to be the
eigenstates of H(q,p), though this is a possibility. Hereafter, to avoid the ambiguity, we use the
Latin subscripts to denote the members of the basis set and reserve Greek subscripts to denote the
solutions of Egs. (16a) and (16b). Expansion ofy in these bases assumes the form x(q,p,?)
=4, () ,(q) b, (p)e~ P Substituting this form in Eq. (10), multiplying the resulting equation by
#,(q) b(p)e?", and integrating over g and p gives
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A .
ih i [A,H], A=A" Dpositive definite and trA =1, (26)
where A is the matrix of the expansion coefficients and H that of the H (g,p) in either y—, ¢—, or
¢— basis. Equation (26) is von Neumann’s equation for the evolution of the density matrix. As is
known the case tr(A%)=tr A=1 represents an ensemble in a pure state. If tr(A%) < 1, the ensemble
is in a mixed state.

V. CANONICAL TRANSFORMATIONS

All machinery of the canonical transformations from one extended coordinate system to
another and their associated unitary or similarity transformations in the function space are avail-
able for a forage of deliberations. Except for a passing remark on the prospects of fuller uses of
this approach at the end of this section, here we confine ourselves to one one-parameter family of
transformations of which Wigner’s state function emerges as a special case. Husimi’s all positive
distribution functions are also briefly mentioned.

Consider the infinitesimal transformations

q=Q-éallp, m,=Ily; p=P-dally,, m,=Ilp, (27)

The generator of the transformation is G=,,. To this (and for a finite ) there corresponds the
unitary operator

U, = ¢-iaG/h — eihadligd, Ulu,=1, (28)

in the function space. Operating by U, on a pure state function x(gq,p.t)=i{q)¢ (p)
Xexp(—ipq/ ) generates another state function (let us call it a-representation)

1\ . .
X(q.p.t) =Uyx= <m> f (g —any (g + (1 - a)ne?™dr. (29)

See the Appendix for proof of Eq. (29). For a=1/2, Eq. (29) gives Wigner’s standard
function,'>'® X12=W(q,p.t). The cases =0 and 1 simply give back y and x* of this paper,
respectively. Similarly, operation by U, on Eq. (10) gives the evolution equation for x,,

. aXa(qva) . d +
h———=ih—U,x)=(UHU')U x,
i XELLD iy (0,50 = (U, HU U
(30)
-, IXalgp51) nA(1-2a) & X
fL = e — ﬁ -
! ot HaXa 2m &qzxa ' m&ar
(-ao)"-(l-a)" IV
i) X
n=0 n. aq &p

See the Appendix for proof of Eq. (30). For @=1/2, even n terms in Eq. (30) cancel out and one
again recovers Wigner’s evolution equation.3 See Eq. (A7).

A. Assigning g-space operators to phase space functions: Ordering rule

The phase space state functions are devised to evaluate the expectation values of a c-number
observable, F(q,p), by integrations over the phase space. Upon reduction to the g space, say,
f(g,p) turns into a differential operator in terms of ¢ and m,. The questions are: (1) how are
different factors of noncommuting ¢ and , ordered in a given a-representation? (2) Averaging a
given F(q,p) with different y,’s gives different values, how do such averages change from one
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a-representation to another? Let F «(q,7,) be the g space operator corresponding to the c-number
monomial ¢"p™ in phase space when averaged by y,. The defining equation forF olq,m,) is

(q"p"™ o= f q"p"x.dpdq = f W (QF g, 7,)¥q)dg. (31)

For the combination of @=0 and 1 corresponding to (y+ x*) of Eq. (11) this is already worked out
in Eq. (25¢) and is the symmetric ordering

g'p" — S+ ). (32)
For a general a, it is given in Eq. (A10),

m
r

g — > ( )((1 - a)m,)'q" (am,)"". (33)
r=0

For @=1/2 this reduces to Weyl’s ordering,z’3 which is known to go with Wigner’s functions. To
answer the second question we note the following:

(G"P" om0 = f q"p"xdgqdp = f q"p" Ul x.dqdp = f U q"P") Xodqdp ={U(q"P")) >
(34)

where by Eq. (29) we have used y=U"y,. The conclusion is that ¢"p™ averaged by x is the same
as U,(q"p™) averaged by x,. Upon adoption of

_y Ciah) #
Ua=2 k' gt ap*

and operation by it on ¢"p™ one finds
smaller of n or m

Ug'p™ = > (it a)k! <n>(’Z )q "k

k=0 k

Q
S

n—1,_m-1

1
=¢"p"+(-ih a)ymng" 'p" " + E(_ it a)n(n-Dmm-1)g"2p" 2+ - .

(35)

B. Assigning phase space functions to q space operators

To a given operator F (¢,m,), a Taylor-expanded series in whatever order of powers of ¢ and
Ty WE associate the following c-number function:

F(q:p) = 2 FonXom = (q|Fp)e™ 4™, (36)

n,m

where F,,,=(n |ﬁ |m) is the matrix element of F in the basis of the eigenstates of I:I(q, ,). This is
actually the inverse of the procedure that we used in Eq. (31) to associate an operator with a
c-number function (let =0 and replace ¢"p™ by F(q,p) in Eq. (33) to see the analogy). The
second equality in Eq. (36) expresses the same in the ket- and bra- notation of Dirac.

The corresponding function in a-representation is simply
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Fo(q.p) = UaF(q.p) = 2 FuuUaXom = f (q-arFlg+1(1 - a)De?™dr. (37)
This is actually the generalization of Eq. (29) for a general operator £ (g,m,). The rule for the
product F=AB is worked out in Eq. (A13):

oo

D (=ih )" d"A(q,p) I'B(q.p) .

Flg.p=)qlA(q, m,)B(g,m,)|p)e """ = . ” p (38)
n=0 M ap dq
One may also work out the a-representation of Eq. (38):
., 9 . J
Folq.p) =UF(q.p)=As| q+ifia—.p—it a(l - a)— |B,(q.p)
ap Jq
SGh)y 9 9 9 o |
=3 e~ (=) | Adg.n)Ba.p). (39)
n=0 N: an &pB aPA (9(/3

See Eq. (Al7) for details of the derivation. In Sec. VII, we analyze Bloch’s problem as an
illustration of the use of the developments of the last two subsections.
C. A remark on general transformations

An economical way of treating canonical transformations is the symplectic formalism. Let 5
be the column vector (g, T Ps 71',,). The equations of the classical dynamics assume the following
form

oH
n=J—, (40)
an

where H(#) is the extended Hamiltonian of Eq. (7) and J is the symplectic metric

_(j 0) ._(o 1) Al
J_oj’J_—lo' (41)

An infinitesimal canonical transformation from # to m+ 67 is of the form

G
n+ 5n=n—e—(”), (42)
an
where G is the generator of the transformation and e indicates its infinitesimal character. The
matrix of the transformation is

&G
M;=05,-¢€ . (43)
an;m;
The condition for canonicity is
MIM'=J +0(€). (44)

This imposes the condition on G to be either linear in 7; or quadratic and symmetric in 7;, ; or
both. For clarity, hereafter we confine our discussion to a system of one degree of freedom, N
=1. The most general form of G with the restriction just mentioned is

G(n) =a;m+ a;mm;,  i,j=1,2,3,4 correspond to g, m,; p, m,, (45)

where the four parameters g; initiate translations and the ten symmetric «;; cause rotations, boosts,
squeezes, scale changes, etc. The ten transformations a;; constitute a symplectic group SP(4), and
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is locally isomorphic to the (3+2)-dimensional Lorentz group. This is the group that Kim and
Noz'” encounter in their study of four-dimensional phase space consisting of two oscillators
representation of O(3+2), and proves to be a useful mathematical tool in quantum optics. To each
of the fourteen transformations of Eq. (45) there corresponds a unitary or similarity transformation
in the function space. That of Eq. (27) it is unitary. An example of nonunitary operators is the
following. To the canonical coordinate transformation

i€ 1
q=Q+%HQ+EHP, 'ﬂ'q:HQ,
(46)
it 1
p=P+ZHP+5HQ’ 7T[,=HP,
there corresponds the complex similarity operator
€ (92 n: & lﬁ (92
Se=exp LI (47)
4 dq>  4edp 2 dgap |’

where € is a finite parameter of the transformation. Husimi’s® all positive distribution in terms of
X is

XHus(q’pNg) =SaX(‘]’P) (48)

VI. BLOCK’S EQUATION IN PHASE SPACE

In this section we intend to illustrate some usage of the formalism developed so far. In any
discussion of statistical mechanics, the partition function, Z(8)=tr O, O(g, 7Tq)=exp(—,81:1), plays

a pivotal role. Its calculation, however, is often cumbersome. One practice is to translate Q) and the
corresponding Bloch’s differential equation18 into a phase space languaxge,‘%’16 solve the equation
for a c-number (g, p, B) and calculate Z(B)=[Q(p,q,B)dgdp. The ease of doing the job depends

on the choice of the c-number assigned to Q. Our suggestion is that of Eq. (36) Bloch’s equation
for Q) is

90 . n .
— —_HO=-0H. (49)
B

We apply the rule of Eq. (36) to Eq. (49). Noting that I:I(q, m,)—H(q.p)= p*/2m+V(q) and using
the product rule of Eq. (38) gives

2
—m(g; ) {H( p) - li;h ;q 2ﬁ jz } Qp.q).
This same result is obtained in Ref. 19, however, by a totally different approach and through much
lengthier calculations using Moyal’s characteristic technique. Equation (49) in Wigner’s represen-
tation is obtained by replacing Q with Qy(q,p;B8), H with p?/2m+V(q) and using Eq. (A17) with
a=1/2 to find the expression corresponding to HQO. In agreement with Refs. 3 and 16 one finds

(50)

_Iwlg.psB) ) PP WP E (iR

- 4 Qylg.p:P). 51
(7B 2m 8m &q =0 n' (9 n (q)a n W(qp B) ( )

The contrast between the two, Egs. (50) and (51), is striking. The former is a second-order
differential equation in ¢ and the exact quantum effects in it appear as % and %2 only, while the
latter in addition to ¢/dg” is an nth-order differential equation in p and has all powers of # in it.
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In the following we solve Eq. (50) and give the partition functions for the simple harmonic and
linear potentials.

A. Simple harmonic potential
For H(q,p)=1/2(p*/m+mw?q?) the solution is of the form

O =exp| —A(BH(q.p) - iB(ﬂ)’% —cp|. (52)

Substituting this in Eq. (50) and letting the coefficients of different powers of ¢ and p vanish,
gives

dA
— =1-htw’A%, (53a)
dg
dB
— =1%w?A(1 - B), (53b)
B
dc 1
— = —h’w’A. (53¢)
dg 2

The condition Q(g,p,0)=1 imposes the boundary conditions A(0)=B(0)=C(0)=0. With these
provisions one finds

A(B) = L tanh 87 w, (54a)
hw
Bhw
B(B) = tanh B7 w tanh 5 (54b)
Cc(B)=- % In cosh B w. (54c¢)

The partition function is

+00

2B =

ol
el i } . (55)

The normalized density function is x(g,p,B8)=Q(q.p,B)/27hZ(B), with low and high tempera-
ture limits

f
QO(q,p,B)dgdp = [2 sinh B

!’_

2 1
X:—\ exp{—H(q,p)——lpq}, Bho>1,
Th h

Bw
x=_expl-BH(q.p)], Bho<l, (56)
in agreement with the quantum and classical limits, respectively.

B. Linear potential

The case is of interest for quark model,zo where a sea of semi-infinite matter creates a linear
potential V(g)=kq, 0=g <, and k>0. By the same procedure above one obtains
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- 02 bk 3ﬁ2k2
Q(q,p,ﬁ)zexp[—BH— lﬂzpm +ﬁ6m :|» (57)
2 3h2k2
2(p)- ﬁexp{ﬂ o ] (58)
37,2 - 02 hk 3ﬁ2k2
Xg.piB) =5 GXP[—BH—lBZPm +ﬁ8m } (59)

The corresponding Wigner’s function”' can be obtained by letting U,,, operate on Eq. (59).

VIl. CONCLUSION

We have developed a quantum mechanics in phase space by carrying the independent and
symmetric roles of g and p, so eminent in the Hamiltonian formulation of the classical mechanics,
to quantum domain. This is done through the extension of the phase space by introducing the
momenta m, and m, conjugate to ¢ and p, respectively, and the subsequent extensions of the
Lagrangians, Hamiltonians, Poisson’s brackets, etc. In its full generality, the theory describes the
dynamics of the quantum ensembles. Its pure state case is reducible to the conventional quantum
mechanics in g- or p-spaces, however, with a definite rule for ordering of the factors of noncom-

muting operators. The latter feature is a direct consequence of the independence of g and p that is

maintained at all stages of the formalism. Simple rules for assigning an operator I:"(q,ﬂ-q) in
g-space to a function F(g,p) in phase space and vice versa are prescribed. Extended canonical
transformations enable one to go from one extended phase space to another. Correspondingly the
associated unitary or similarity transformations in the function space enable one to generate
further state functions from a given one. This unifying feature of the theory makes the comparison
of the various functions existing in the literature possible and transparent.

To demonstrate the simplicity and the power of the formalism certain examples are worked
out. Treatment of Bloch’s equation, partition functions for simple harmonic and linear potentials,
and the mathematical lemmas of the Appendix serve this end. Nasiri and Safari”* and Razavi®
have found the presented formalism of considerable assistance in their study of dissipative quan-
tum systems.
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APPENDIX

Evaluation of x,=U,x: By three Fourier and inverse Fourier transformations we convert y
=i(q) ¢"(p)exp(~ipq/ #) into the following forms;
iq(p/_p!l) ipT _l'p/!

P eXp — - exp — dp'dp"dr. (A1)

X= f ¢(p") " (p")exp

By this provision we have moved both ¢ and p variables to the exponent. Next we expand U, of
Eq. (28) in power series, operate by it on the ¢ and p exponents, and arrive at

k= . ’ "
Gah)t & & iglp'=p")
k=0 k! (9pk aqk P h

—iar(p’ - p") ox iq(p' = p") exp PT
% P P

(A2)

expip—T—ex
Pt

Using Egs. (A1) and (A2) in the expression y,=U,x, and inverting ¢’s back to ’s gives Eq. (29),
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1 \N . 4
XoP>q:) =Upx = (ﬂ) f g —any' (g + (1 - a)ne?™dr. (A3)

As mentioned earlier, for «=1/2 one recovers Wigner’s standard state functions. .
Evolution equation for x,: To prove Eq. (30), it is sufficient to evaluate H,=U,HU,, where
H is the extended Hamiltonian of Eq. (10). It is easy to show that Q=U,qU'| =g—amp and P

= UapUL= p—am,, which is the essence of the transformations of Eq. (27). We also note that

Uad'p" U= (g = am,)"(p— am)" = (p - am,)"(q - am,)". (A4)

We leave it to the reader to verify Eq. (A4) for him/herself for some small n and m. It is needless
to say that [Q, P]=0, because the transformation is unitary. With these provisions one finds

Ho=Hlg-am,p+(1-a)m,]-Hlg-(-a)m,p-am,). (A5)

Expansion of the Hamiltonian about (gq,p) gives

h*(1-2a) & d -a)"-(1-a)" A
Ha=—M—2—iﬁ£—+2M(—iﬁ)"——. (A6)
2m  dq moq - n! aq" ap"
The Wigner case is for a=1/2,
p 1 (ﬁ >2n+1 &2n+1V 0—,2n+1
Hy=—ih——+2, ——| — — 5 A7
W=t maq o 2n+1)1\2i ag>t! gp*rt! (A7)

Ordering rule in a-representation, proof of Eq. (33): With Egs. (31) and (A3) we have

400
q"'p" o= f " Wq-any (g+ (1 - a)n)p"e?™dgdpdr. (A8)

Writing p™ as (ih)™d"/ 97", integrating by parts m times with respect to 7 frees the integrand from
the p™ factor. Then integration with respect to p gives &(7). Thus

a"
ar"

q'P")a= f q"(=ih)"—— g - any (g + (1 - a)n]&(1)dgdT. (A9)

Next we substitute d/d7 by d/dg with appropriate adjustments and carry out integrations by parts
over g whereever necessary to free ¢ and arrive at

@'P"e=| ¥(@ [E (T )((1 -a) Wq)’q”(awq)’""] ¥q)dq. (A10)

—0 r=0

The expression in the integrand is the desired ordering of Eq. (33), corresponding to ¢"p” in
a-representation. For a=1/2 one recovers Weyl’s ordering

1\"< (m
q"p’"ﬂ(—) 2( )ﬂ{,q"w’;". (A11)
r

2 r=0

The combination of a=0 and 1, corresponding to averaging by x+ x", is the symmetric ordering of
Eq. (32). d

The product rule, proof of Egs. (38) and (39): The phase space function corresponding to the
product of two operators F=AB, by the definition of Eq. (36), is
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F(g.p) = (q|AB|p)e 4" = f (qlAlp"Yp'|Blp)e P dgdp

-i(q' —q)(p' - p)
. d

= J Alg.p")B(q',p)exp qdq, (A12)

where by Eq. (36), we have substituted {q|A|p’Y=A(q,p"exp(ip’q/ %) and similarly for (g’ | B|p).
With further change of variables ¢’ —g=¢" and p' —p=p”, we obtain

—-ih)"d"Alq,p) I'B(q.p)
aq" ’

n

F(g.p)= f A+ PIB + g " Pgap = 5 ,
n=0 n: (9[7

(A13)

where we have Taylor-expanded A(q,p+p”) and B(g+q”,p) about (g,p) and carried out the
required integration by parts.

To deduce Eq. (39), we first Fourier-transform A(q,p) to a(p’,q’) and B(q,p) to b(p",q") in
Eq. (A13) and carry out the necessary differentiations:

~(—ih) —ip'q+ig'p , ,
Fg.p)=2 — = | alp’.q)exp ————dp'dg’ —
= n! dp h dq

v oo —iP'g+iq’p

X | b(p",q")exp P dg"dp

—ip'qg+iq —ip"d'p .,
= f a(p’,q')exp %b(p”,q”)ew P 4P ﬁq L pia'v "dq'dp'dq"dp".

(A14)

Next we operate on Eq. (A14) by a Taylor-expanded form of U, as in Eq. (A2) and perform the
required differentiations:

ron

—ip'q+iqg'p-(1-a)g'p"+ aq”p’a
#

F,(q.p) = UF(q.p) = f elad' P hexp (q'.p")

- " . "
% eiaqupn/ﬁexp Ipq+iqp

ﬁ b(p//,q//)dq/dpldq//dpll' (Als)

The exponentials preceding a(p’,q’) can be written as

eiﬁaﬂz/al"’qexp — lp’(q + aq”) + lq’(p _ (1 _ a)p//)
ﬁ b

where the first factor is simply U,(q,p) independent of the integration variables (¢',p’,q".,p").
With this provision integrations over ¢’ and p’ can now be carried out and a(p’,q') inverse-
Fourier transformed. One finds

"on

Fo(q.p) = f {UAlg+ aq".p - (1 = a)p"Tjeled P Thel=n"atid' Dy gMdg"dp”.  (A16)

We again apply the same trick. To the left of the rightmost exponential we replace, everywhere, ¢”
by (=ifid/dp) and p" by (ih d/dq), perform the inverse Fourier transform of b(p”,q") and find
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P d
F,(q.p) =U,F(q.p) =Aa{q +iha—,p—iha(l - a)—}Ba(q,p)
dp aq

_ @[ AN 1—a)ii}"Aa(q,p>Ba(q,p>. (A17)

= o
nmo 1! 944 Ipg Ipadqp

where d/dp, indicates a differentiation on A(g,p) only, similarly the other differential operators.(]
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