
Journal of The Korean Astronomical Society29: S277 � S278, 1996 S277STARS AS GRAVITATIONAL WAVE DETECTORSH. G. Khosroshahi1 and Y. Sobouti1;2;31Institute for Advanced Studies in Basic Sciences, P.O. Box 45195-159, Zanjan, Iran2Department of physics, Shiraz University, Shiraz, Iran3Center for Theoretical Physics and Mathematics, AEOI, Tehran, IranABSTRACTIn attempts to detect gravitational waves, the response of some celestial systems such as the earth[1] or binarysystems[2] to such waves have been investigated. Following this line of thought, here we study the possibilityof excitation of the oscillation modes of a polytropic star by gravitational radiation and calculate the relevantabsorption cross sections.I. A REVIEW OF THE NORMAL MODESOF A STARLet �(r), p(r) and 
(r) denote density, pressureand gravitational potential of a non rotating spheri-cal star in hydrostatic equilibrium. Let a mass ele-ment at r undergo an in�nitesimal displacement �(r; t)from its equilibrium position. It causes small changes��(r; t); �p(r; t) and �
(r; t). The linearized Euler'sequation of motion is���� = 5(�p) + ��5
+ �5 (�
) =W� ; (1)�� = �5:(��); (1a)�p = dpd��� � [(@p@� )ad � dpd� ]�5 :�; (1b)52(�
) = �4�G��: (1c)� belongs to a vector space H in which the inner prod-uct is de�ned as (�; ��) = R ���:� d3x = finite; �; � 2H: W is self-adjoint on H and gives rise to the eigen-value problem W�n = !2n��n; (2)where !2n's are real, the set f�ng is orthonormal, (�n; ��m)= �nm, and complete.Using a gauged version of Helmholtz's theorem[4],one may decompose a general displacement vector intoan irrotational and a \weighted" solenoidal component.Thus � = �p + �g ; (3)where�p = �5�p; with5��p = 0; (3a)�g = ��15�5�(r̂�g); with5 :(��g) = 0: (3b)Here r̂ is the unit vector in r direction, and �p(r) and�g(r) are two scalars. Evidently these two componentsare orthogonal, (�p; ��g) = 0.

II. INTERACTION WITH GRAVITATIONALWAVESWe consider a plane gravitational wave propagatingin the z-direction with a metric tensor,h��(x; t) = <fA��ei(kz�!t)g; (4)where ! = ck, and A�� , in a transverse-tracelessgauge[5], is A�� = 0B@ 0 0 0 00 A+ A� 00 A� �A+ 00 0 0 0 1CA (5)here A+ and A� are the amplitudes of the two orthogo-nal polarizations of the wave. We shall assume A� = 0and the wavelength much larger than dimensions of thestar(i.e. eikz � 1). Incidence of such a wave on a starcauses an acceleration of a mass element at x, relativeto the center of mass of the form�x = �12!2A+(!)e�i!t5 V; (6)V =r2�15 r2[Y2;2(�; �) + Y2;�2(�; �)]:In �rst order, the same acceleration and potential couldbe obtained by analyzing the relative motions in aFermi normal coordinate system set up at the centerof mass[6].Incorporating the force arising from this accelerationand a dissipative term proportional to _� in Eq.(1) gives�(�� + 2 _�) +W� = �12!2�A+(!)e�i!t5 V: (7)We solve Eq.(7) by expanding �(r; t) in terms of thenormal modes (!n; �n) and obtain the expansion coef-�cients. Thus,�(r; t) =Xm cm�m(r)e�i!t: (8a)cn = 12A+(!) !2(!2 � !2n) + 2i! (�n; �5 V ): (8b)



S278 KHOSROSHAHI & SOBOUTITable 1. Cross sections for di�erent modes of polytropic indeces 1.5, 2, 2.5Polytropic Index 1.5 Polytropic Index 2 Polytropic Index 2.5mode !2n j(�n ; �5 V )j2 �n !2n j(�n ; �5 V )j2 �n !2n j(�n; �5 V )j2 �np5 6.345(+1) 6.3867(-7) 6.365(-5) 6.112(+1) 1.5946(-5) 1.531(-3) 5.979(+1) 1.4613(-4) 1.372(-2)p4 4.130(+1) 1.0238(-5) 6.641(-4) 4.063(+1) 1.0914(-4) 6.965(-3) 4.068(+1) 5.8340(-4) 3.727(-2)p3 2.351(+1) 1.8897(-4) 6.978(-3) 2.407(+1) 8.7635(-4) 3.313(-2) 2.512(+1) 2.6647(-3) 1.051(-1)p2 1.029(+1) 5.2094(-3) 8.420(-2) 1.155(+1) 9.6116(-3) 1.743(-1) 1.314(+1) 1.5576(-2) 3.214(-1)p1 2.119(0) 4.0377(-1) 1.343(0) 3.113(0) 2.9824(-1) 1.458(0) 4.832(0) 1.9896(-1) 1.510(0)g1 0 0 0 5.633(-1) 7.4242(-4) 6.569(-4) 1.805(0) 4.3563(-3) 1.235(-2)g2 0 0 0 2.967(-1) 1.2377(-4) 5.768(-5) 9.904(-1) 8.9175(-4) 1.387(-3)g3 0 0 0 1.839(-1) 2.4745(-5) 7.148(-6) 6.284(-1) 2.3766(-4) 2.345(-4)g4 0 0 0 1.254(-1) 6.0549(-6) 1.192(-6) 4.192(-1) 8.0304(-5) 5.287(-5)g5 0 0 0 8.858(-2) 1.1506(-6) 1.600(-7) 2.646(-1) 2.0701(-5) 8.604(-6)Frequencies, !2n, are in units of 3:95� 10�7(M�=M�)(R�=R�)3 sec�2:Cross sections, �n , are in units of G2�cM�R�2=c3.For �c� = 16 gr=cm3 , R� = 6:96� 1010 cm; M� = 2� 1033 gr and  = 1 s�1, this unit is 2:5� 1010 cm2 .The energy ux of the gravitational waves per unit fre-quency interval is[5]�(!) = c316�G < _h2xx + _h2yy >time av:= c3A2+(!)!28�G :(9)so the cross section for the energy transfer from thegravitational waves to the star is,�tot = �2 Gc3 Xn !2nj(�n; �5 V )j2: (10)III. NUMERICAL CALCULATIONThe overlap integrals (�n; �5 V ) are calculated bynumerical methods. V is a spherical harmonic of order2, therefore, only the normal modes belonging to l =2; m = �2 will contribute to the overlap integral, thatis �n(r) = �n(r)Y2;�2. The g and p decomposition ofequation (3) for �n gives(�n; �5 V ) = 4r2�15 Z d�dr�p(r)r3dr: (11)That is, the gravitational radiation interacts only withthe irrotational p component of any given mode.For numerical calculations the following steps weretaken.1) A Rayleigh-Ritz variationalmethod was employedto obtain the eigenfrequencies and eigenfunctions forvarious g and p modes[3,7]. The method consisted ofexpanding the p and g potentials of equations(3) inpower series of r, substituting the resulting �'s in equa-tion(2) and �nding the expansion coe�cients by varia-tional calculations.2) The information thus obtained was used to ex-tract the p potential for each of the p and g modes andto calculate the overlap integral of equations (11), andeventually the cross sections and the energy absorptionrates. Numerical values for polytropic structures aresummarized in Table 1.

IV. CONCLUDING REMARKSThe gravitational radiation, being a quadropole oneand derivable from a scalar potential excites only thesecond order harmonic modes of the star and that onlythrough the irrotational component, �p.Therefore, the g-modes with small irrotational com-ponents present much smaller absorption cross sectionto the gravitational radiation than the p modes. Inthe p sequence the cross section decreases as the modeorder goes up. See Table 1 for these behaviors.REFERENCES[1] Weber J., 1968, Phys. Rev. Lett. 21, 395[2] Mashhoon B., 1979, ApJ 227, 1019[3] Sobouti Y., 1981, Astron. Astrophys. 100, 319[4] Marzlin K.P., 1994, Phys. Rev. D50, 888[5] Sobouti Y., 1977a, Astron. Astrophys. 55, 327[6] Sobouti Y., Silverman, J.N., 1978, A&A 62, 365


