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ABSTRACT

Aims. We investigate the standing kink modes of a cylindrical model of coronal loops. The density is stratified along the loop axis
and changes discontinuously at the surface of the cylinder. The periods and mode profiles are studies with their deviation from those
of the unstratified loops. The aim is to extract information on the density scale heights prevailing in the solar corona.
Methods. The problem is reduced to solving a single second-order partial differential equation for δBz(r, z), the longitudinal compo-
nent of the Eulerian perturbations of the magnetic field. This equation, in turn, is separated into two second-order ordinary, differential
equations in r and z that are, however, connected through a dispersion relation between the frequencies and the longitudinal wave num-
bers. In the thin tube approximation, the eigensolutions are obtained by a perturbation technique, where the perturbation parameter is
the density stratification parameter. Otherwise the problem is solved numerically.
Results. 1) On functional dependencies of the dispersion relation the radial wave number is independent of the longitudinal stratifi-
cation. 2) We verify the earlier computational finding that the first overtone frequencies increase with increasing stratification and the
observational finding (from analysis of TRACE data) that the ratio of the first to the fundamental overtone frequency decreases with
increasing stratification. The method we use to arrive at these conclusions, however, is more analytical than computational, and yet our
numerical results agree with the earlier results. 3) The mode profiles depart from the sinusoidal mode profiles of the unstratified loops.
This departure and its dependence on the scale height is obtained, and might serve to determine scale heights once high resolution
data become available.
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1. Introduction

Since the earliest identification of the kink oscillations in coro-
nal loops by Aschwanden et al. (1999a) and Nakariakov et al.
(1999), a considerable amount of data has been analyzed by
Aschwanden et al. (2002), Schrijver et al. (2002), and Wang
& Solanki (2004) using the high-resolution observations of
TRACE, SoHO, Yohkoh, etc. See Aschwanden (2003) and
Nakariakov & Verwichte (2005) for an extended review of ob-
servations of coronal oscillations.

Verwichte et al. (2004) report periods, phases, damping
times, and mode profiles for nine coronal loops. As expected, the
results differ from those based on simplified theoretical models
assuming cylindrical geometries, constant cross sections, con-
stant magnetic fields, constant gravitation, isothermal structures,
constant densities, no initial flows, etc.

There are numerous attempts to arrive at reasonably realis-
tic models where various effects have been from loop geome-
try to structuring and damping have to be addressed. Only after
these studies can we conclude what may or may not be important
in the context of solar magneto-seismology, i.e. for solar coro-
nal oscillations. Both Smith et al. (1997) and Van Doorsslare
et al. (2004) have studied the effect of the loop curvature on
the oscillations frequencies. Bennett et al. (1999) and Erdélyi
& Fedun (2006) the twisted magnetic flux tubes in incompress-
ible media and compare their body, surface, and hybrid modes
with those of the untwisted cases. Terra-Homem et al. (2003)
went on give a detailed discussion of the frequency shifts caused
by field-aligned background flows. Nasiri (1992) simulated a

variable cross section by assuming a long narrow-wedge ge-
ometry. Ruderman (2003) removed the degeneracy inherent in
loops of circular cross sections by assuming elliptical cross sec-
tions. Díaz et al. (2001) studied the fast oscillations in the fine
structure of prominence fibrils. Erdélyi & Carter (2006) then ob-
tained a full analytical dispersion relation for the propagation of
MHD waves in structured magnetic flux tubes embedded within
a straight vertical magnetic environment. Mikhalyaev & Solovev
(2005) consider the MHD oscillations of double magnetic flux
tubes in uniform external fields. De Pontieu et al. (2003a,b) an-
alyze the mechanism of leakage from the photosphere and the
chromosphere into the transition regions and the corona. Díaz
et al. (2004) introduce photospheric line-tying boundary condi-
tions to emphasize the rate of leakage in damping of the oscil-
lations. This is an extension of the infinite homogenous loops of
Edwin & Roberts (1983). Mendoza-Briceño et al. (2004) studied
the effect of the gravitational stratification, and find a 10–20%
reduction in damping times of oscillations.

Andries et al. (2005a,b) calculate damping rates of longitudi-
nally stratified cylindrical loops and conclude that the ratio of the
frequency of the first overtone to that of the fundamental mode
is less than 2, the value for the unstratified loops. They use this
ratio to estimate the amount of the density-scale height in the so-
lar atmosphere. Dymova & Ruderman (2005) reduce the MHD
equations prevailing in a thin and longitudinally stratified mag-
netic fibrils, into a Sturm-Liouville problem for the eigenvalues
and eigenmodes of the fibril. Erdélyi & Verth (2007) use the ap-
proach of Dymova & Ruderman (2005) to study the deviations of
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the mode profiles, i.e. the eigenfunctions, of the stratified loops
from the sinusoidal profiles.

In this paper we study the kink modes of a longitudinally
density-stratified loop. We reduce the MHD equations to a wave
equation with variable Alfvén speed for the z-component of the
magnetic field. The dispersion relation, relating the frequencies
and the longitudinal wave numbers, is similar in form to that
for unstratified loops. In the thin-tube approximation, our ap-
proach converge to that of Dymova & Ruderman (2005), who
have rescaled the MHD equations from the beginning to accom-
modate thin tubes.

Equation of motions, boundary conditions, and the radial so-
lutions are dealt with in Sects. 2 and 3. The thin tube approx-
imation is treated in Sect. 4. Concluding remarks are given in
Sect. 5.

2. Equations of motions

A coronal loop, with its ends at the photosphere and with a rel-
atively small curvature (that is, the radius of curvature of the
loop much larger than the loop length), is idealized as a circu-
lar cylinder. The cylinder is assumed to have no initial material
flow, to be pervaded by a uniform magnetic field along its axis,
B = Bẑ, and to have negligible gas pressure (zero-β approxi-
mation). The length and radius of the loop are L and a, respec-
tively (see Fig. 1). The coordinate system is the cylindrical one,
(r, φ, z). The density is assumed to be

ρ(ε, z) = ρi(ε) f (ε, z), r < a
= ρe(ε) f (ε, z), r > a (1)

f (ε, z) = exp
(
− ε
π

sin
πz
L

)
, (2)

where ρi(ε) and ρe(ε) are the interior and exterior densities at the
footpoints of the loop, ε = L/H, where H indicated the scale
length (see bellow). The density variations for inside and out-
side of the loop are governed by the same function f (ε, z). The
exponential stratification of the density has been pointed out by
Aschwanden et al. (1999b) on the basis of their EUV studies in
30 loops from the SoHO/EIT data. The sinusoidal form of the
exponent is suggested by Andries et al. (2005b). It ensures the
symmetry with respect to the midpoint of the loop. See, how-
ever, Erdélyi & Verth (2007) for alternatives to this sinusoidal
exponent.

Here, as in most other works, the stratification of the den-
sity and its exponential scaling is adopted as an empirical fact.
Evidently its source is not a gravitational one, because, a) the
gravitational scale height in coronal conditions far exceeds any
length scale in solar environments and b) the loops are not, gen-
erally, oriented along the gravitational field of the sun.

In the following we consider loops of different scale heights
but of constant total column masses µi and µe, independent of ε.
Thus,

µi

ρi(ε)
=
µe

ρe(ε)
=

∫ L

0
f (ε, z)dz = L

[
I0

(
ε

π

)
− L0

(
ε

π

)]
, (3)

where I0 is the modified Bessel function of the first kind and and
L0 is the modified Struve function (see Gradshteyn & Ryzbik
2000).

The linearized ideal MHD equations for the Eulerian pertur-
bation in the velocity and the magnetic fields in a zero-β plasma
are

∂δu

∂t
=

1
4πρ
{(∇ × δB) × B + (∇ × B) × δB}, (4)

ρ
e
 

ρ
i
 

z 

r 
φ 

B 
photospher photospher 

z=0 z=L 

Fig. 1. A sketch of the equilibrium model of the flux tube. Density varies
along the cylinder axis and is symmetric about the midpoint. The mag-
netic field is uniform along the z-axis.

∂δB
∂t
= ∇ × (δu × B). (5)

Note that Eq. (5) ensures the Gaussian law, ∇. δB = 0. From
Eqs. (4) and (5) one can show, after some straightforward calcu-
lations that⎛⎜⎜⎜⎜⎝ω2

v2A
+
∂2

∂z2
− m2

r2

⎞⎟⎟⎟⎟⎠ δBz

B
=

⎛⎜⎜⎜⎜⎝ω2

v2A
+
∂2

∂z2

⎞⎟⎟⎟⎟⎠ 1
r
∂

∂r

(
r
δvr
iω

)
, (6)

⎛⎜⎜⎜⎜⎝ω2

v2A
+
∂2

∂z2

⎞⎟⎟⎟⎟⎠ δvriω
= − ∂
∂r
δBz

B
, (7)

where vA(z, ε) = B/
√

4πρ(z, ε) is the local Alfvén speed and is
different for inside and outside of the loop. The term δvr/iω ap-
pearing in Eqs. (7) and (6) is actually the Lagrangian displace-
ment vector in the loop. The remaining components of δu and
δB are given by

δvφ =
ω

mBz
rδBz − 1

im
∂

∂r
(rδvr), δvz = 0, (8)

δBr = −Bz

iω
∂δvr
∂z
, δBφ = −Bz

iω

∂δvφ

∂z
· (9)

See, e.g., Karami et al. (2002) and Safari et al. (2006) for details.
Let us also emphasize that the present form of Eq. (7) utilizes the
fact that ρ and, consequently, vA depend only on z. There is no
radial variation except for a step discontinuity at the surface of
the tube.

Eliminating δvr between Eqs. (7) and 6) gives(
1
r
∂

∂r
r
∂

∂r
+
∂2

∂z2
− m2

r2

)
δBz +

ω2

v2A
δBz = 0. (10)

This is a wave equation for δBz with the variable speed vA(ε, z).
We solve it by the separation of variables. Let δBz = R(r)Z(z).
For later convenience, we add and subtract the term ω2

v2A(ε=0)
δBz

to and from Eq. (10), and follow the usual procedure for the
separation of variables. We obtain

1
R

1
r

d2R
dr2

+
1
R

dR
dr
− m2

r2
+

ω2

v2A(ε = 0)
=

− 1
Z

d2Z
dz2
− ω2

⎛⎜⎜⎜⎜⎝ 1

v2A(ε, z)
− 1

v2A(ε = 0)

⎞⎟⎟⎟⎟⎠ = κ2z , (11)

where κ2z (ε) is the constant of separation; and in the absence
of longitudinal stratification, it reduces to the longitudinal wave
number. Equation (11) may now be written as(

d2

dr2
+

1
r

d
dr
− m2

r2

)
R(r) + k2R(r) = 0, (12)
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(
d2

dz2
− k2

)
Z(z) +

ω2

v2A
Z(z) = 0, k2 =

ω2

v2A|ε=0
− κ2z . (13)

Both Eqs. (12) and (13) are actually a pair for inside, r < a, and
outside, r > a, of the tube. They are to be solved simultaneously
for R, Z, κz, and ω.

2.1. Boundary conditions

1. The changes in total pressure should be continuous. On ac-
count of the zero-β approximation and constancy of B, this
reduces to the requirement of the continuity of δBz. Thus

Rinterior(a) = Rexterior(a), (14)

Zinterior = Zexterior, for all z. (15)

2. On account of ∇ · δB = 0, δBr should be continuous at r = a.
This, gives (Karami et al. 2002)

1

k2
i

dRinterior(kir)
dr

∣∣∣∣∣∣
r=a

= − 1

k2
e

dRexterior(ker)
dr

∣∣∣∣∣∣
r=a

. (16)

3. The footpoints, z = 0 and L, are expected to be nodes. This
imposes the conditions

Z(z = 0 & L) = 0. (17)

Equations (14), (16), and (17) give four boundary conditions
for the two second-order differential Eqs. (12) and (13).

3. Solutions of Eqs. (12) and (13)

Interior solutions of Eq. (12) that are regular at r = 0 are Jm(|ki|r)
for k2

i > 0 or Im(|ki|r) for k2
i < 0. Exterior solutions that decay

with r → ∞ are Km(|ke|r). They occur for k2
e < 0 and are evanes-

cent waves.
Imposing the boundary conditions of Eqs. (14) and (16)

gives

1
ki

J′m(|ki|a)

Jm(|ki|a)
− 1

ke

K′m(|ke|a)

Km(|ke|a)
= 0, (18)

where ′ indicates a derivative of a function with respect to
its argument. The same relation holds for surface waves with
Jm(|ki|r) replaced by Im(|ki|r). For unstratified thin and thick
tubes Eq. (18) is analyzed by Edwin & Roberts (1983). Here
we study Eq. (18) for thin stratified loops by perturbational and
numerical techniques.

4. Thin tube approximation

For a/L� 1 and m ≥ 1, the dispersion relation of Eq. (18) gives
|ki| ≈ |ke|. From the definition of k2 in Eq. (12), one then obtains

ω = κzB(4πρ̄0)−1/2, ρ̄0 =
1
2

[ρi(0) + ρe(0)]. (19)

This is the kink oscillation frequency in the presence of strat-
ification. Edwin & Roberts (1978), Karami et al. (2002),
Van Doorsselaere et al. (2004), and Díaz et al. (2004) all ob-
tained a similar result for ω in unstratified flux tubes. Here, how-
ever, κz is given by Eq. (11). It reduces to the longitudinal wave
number in the absence of stratification. Substituting Eq. (19) into

Eq. (13) (interior with k2
i > 0 and exterior with k2

e < 0) and using
the boundary condition of Eq. (15) yield

d2Z
dz2
+

4πω2

B2
F(ε, z)Z(z) = 0, Z = Zinterior = Zexterior, (20)

F(ε, z) =
ρi(ε) + ρe(ε)

2
f (ε, z).

Equation (20) is an eigenvalue problem weighted by F(ε, z). It is
the same as that of Dymova & Ruderman (2005) derived, how-
ever, with a different approach.

From Eq. (20) one may write down the following integral
expression for ω2

ω2 =
B2

4π

∫ |dZ/dz|2dz∫
F(ε, z)|Z(z)|2dz

· (21)

Some general properties of ω2 can be inferred from Eq. (21).
In Fig. 3, F(ε, z) is plotted versus z for three values of ε. It has
maxima at footpoints and a minimum at the apex. The larger ε,
the higher the maxima and the lower apex become. This reduces
the integral in the denominator of Eq. (21) and causes an increase
in ω2. There is even the possibility of the integral, and thereby
ω2, becoming infinity.

In the following section, Eq. (20) is solved for small amount
of the density scale heights by perturbation, and for arbitrary
scale height parameters numerically.

4.1. Perturbation method

The scale height parameter is chosen as the perturbation pa-
rameter, and all variables and equations are expanded in powers
of ε. Thus,

ω = ω(0) + εω(1) + · · · , (22)

Z(z) = Z(0)(z) + εZ(1)(z) + · · · , (23)

F(ε, z) = ρ̄0

[
1 + ε

(
2
π2
− 1
π

sin π
z
L

)
+ · · ·

]
. (24)

Equation (20) splits into zeroth and first-order components

d2Z(0)

dz2
+

4πω(0)2
ρ̄0

B2
Z(0) = 0, (25)

d2Z(1)

dz2
+

4πω(0)2
ρ̄0

B2
Z(1) +

8πω(0)ω(1)ρ̄0

B2
Z(0)

= −4πω(0)2
ρ̄0

B2

(
2
π2
− 1
π

sin
πz
L

)
Z(0). (26)

Solutions of Eq. (25) for Z(0) and ω(0) with boundary conditions
of Eq. (17) are

ω(0)
l =

lπ
L

B (4πρ̄0)−1/2 l = 1, 2, 3, ..., (27)

Z(0)
l (z) =

√
2
L

sin
lπ
L

z, (28)

where l is the longitudinal mode number, and ω(0)
l the kink mode

frequency in the absence of stratification. The right hand side of
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Eq. (26) is now known. Multiplying it by Z(0)∗, integrating over
z, and reducing it by Eq. (25) gives the first-order corrections

ω(1)
l = ω

(0)
l

1
2

(
Ill − 2
π2

)
(29)

Z(1)
l =

∑
l′�l

cll′Z
(0)
l′ , cll′ =

l2Ill′

l2 − l′2
, (30)

where

Ill′ =

∫ L

0
Z(0)∗

l′
1
π

sin
πz
L

Z(0)
l dz

= − 4
π2

ll′(1 + cos lπ cos l′π)
l4 + (−1 + l′2)2 − 2l2(1 + l′2)

· (31)

Equation (31) agrees with the result of Andries et al. (2005a) (see
S n in their Eqs. (3) and (4)). The Sheffield school maintains that
a knowledge of the deviations of the amplitude profile of strat-
ified loops from those of the unstratified one, Zl − Z(0)

l ≈ εZ(1)
l ,

in our notation can give information on the density stratification
of the loop (private communication, see also Erdélyi & Verth
2007). In Fig. 2, Z(1)

1 and Z(1)
2 are plotted as functions of z. The

first, Z(1)
1 , exhibits two maxima at z/L = 1/6 and 5/6 and one

minimum at 1/2. It is zero at 0, 1/3, 2/3, and 1. The sec-
ond, Z(1)

2 , shows two maxima at z/L = 1/8 and 5/8, two min-
ima at 3/8 and 7/8, and is zero at 0, 1/4, 2/4, 3/4, and 1. The
maxima of Z(1)

1 /Z
(0)
1 and Z(1)

2 /Z
(0)
2 are 0.02 and 0.04, respectively;

see Table 1 Cols. 2 and 4. From the TRACE data, Aschwanden
et al. (2002) report a displacement amplitude of 100–8800 km
at the apex of the coronal loops. For a loop of L = 100 Mm,
ε = L/H = 2, the calculated percentages, 0.02–0.04, Max(∆Z1)
fall in the range 2–176 km. One should be aware of whether the
accuracies of observed data allows the detection of such minute
effects.

We note that ω(1) is positive and tends to zero for l 
 1. The
ratio of the periods of the fundamental and the first overtone is

P1

P2
=
ω2

ω1

= 2
1 + εω(1)

2 /ω
(0)
2

1 + εω(1)
1 /ω

(0)
1

= 2
1 + ε 1

15π2

1 + ε 1
3π2

< 2. (32)

Equation (32) is a useful tool to estimate the density scale height
of the loops, see also Roberts (2005).

4.2. Numerical method

Using a numerical code based on shooting method, Eq. (20) is
solved for eigenvalues and eigenfunctions. For the unstratified
loops, where ρi and ρe are constants, the eigenfrequencies and
the eigenfunctions are those of Eqs. (27) and (28), respectively.
For a range of 0 < ε/π < 25, we have calculated the fundamental
and the first overtone kink frequencies ω1 and ω2, respectively,
and the ratio ω2/ω1 = P1/P2. The results are plotted in Fig. 4.
As anticipated from Eq. (21) and the behavior of F(ε, z), both
frequencies show monotonous increase with increasing ε. For
small ε, ω1 has a steeper slope than ω2, but both approach each
other as ε increases. The ratio P1/P2 begins at 2 for unstratified
loops, ε = 0, and decreases to one at large ε. From the TRACE
data, Verwichte et al. (2004) find the ratio 1.64 and 1.81 for two
of their observed loops. From Fig. 4, ε corresponding to these
ratio are 1.93π and 1.07π, respectively. Assuming typical loop

0 0.2 0.4 0.6 0.8 1
−0.04

−0.03

−0.02

−0.01

0

0.01

0.02

0.03

0.04

x=z/L

Z
(1

)
1

, Z
(1

)
2

First overtone

Fundamental 

Fig. 2. Plot of the first-order perturbations in amplitude profiles of the
fundamental and the first overtone modes. See Eqs. (28) and (30).

Table 1. Maximum amplitude differences between stratified and un-
stratified loops, 1st-order perturbation (Cols. 2 and 4), and full numeri-
cal calculations (Cols. 3 and 5).

ε = L
H Max

(
∆Z1

εZ(0)
1

)
Max

(
∆Z2

εZ(0)
2

)
Perturbation Numerical Perturbation Numerical

2 0.02 0.017 0.04 0.036
5 0.02 0.022 0.04 0.04

lengths, L = 100–250 Mm, the density scale height falls in the
range of H ≈16–41 and 30–74 Mm, respectively. These scale
heights agree with the finding of Andries et al. (2005a,b).

The longitudinal part of the eigenfield, Z(z), is plotted in
Fig. 5 for l =1, 2, 3 and ε =0, 2, 5. As ε increases, a) the eigen-
profiles depart further from the sinusoidal profiles of the unstrat-
ified case, b) the antinodes move towards the footpoints, and c)
the central antinode gets flattened in the case of odd l.

The differences between the eigenprofiles of the stratified
and the unstratified cases, ∆Zl = Zl(ε, z) − Zl(ε = 0, z), are plot-
ted in Fig. 6 for the fundamental and the first overtone modes.
Expectedly, the difference increases with increasing ε. The max-
ima rise and move towards the footpoints as ε increases. For
example, for ε = 2 and 5 ( corresponding to L = 200 Mm,
H = 50 and 20 Mm, say ), the first maximum of ∆Z1 is located at
z = 36 Mm and 35 Mm, respectively, in agreement with Erdélyi
& Verth (2007).

Table 1 shows Max(∆Zl/εZl) for l = 1, 2 and ε = 2, 5.
Columns 2 and 4 are from the first order perturbation calcula-
tions. Columns 3 and 5 are from the full numerical analysis. The
proximity of the two different methods of calculations, even at
scale heights as large as ε = 5, is striking.

Aschwanden et al. (2002) report a displacement amplitude
of 100–8800 km at the apex of the kink modes. Combined with
the fractional deviations of Table 1, one may calculate actual
physical deviations of 2–176 km for ε = 2 and 6–528 km for
ε = 5. This result also agrees with Erdélyi & Verth (2007). The
question remains as to whether the accuracy of the observed data
will allow the detection of such small effects.

5. Conclusions

We have studied the MHD oscillations of a vertically stratified
coronal loop

– Equation (20), for the longitudinal component of the waves,
is the same as those of Dymova & Ruderman (2005).
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Fig. 3. F(ε, z) versus z/L. ε = 0.0 (solid line), ε = 2π (dashed line), and
ε = 10π (dot dashed line). As ε increases, F(ε, z) recedes towards the
end points and is void around where the mid point widens.
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Fig. 4. The frequencies, ω1 and ω2, and the ratio P1/P2 = ω2/ω1 versus
ε/π. Auxiliary parameters are the tube length =100a, B = 100 G, and
ρe/ρi = 0.1.

– The oscillations frequencies, obtained from Eq. (20), de-
pend on the stratification parameter ε. This in turn, makes
the radial wave numbers, ki & ke of Eqs. (13) and (18)
ε-dependent.

– In the thin tube approximation, the eigenfrequencies are ob-
tained by both perturbational and numerical techniques.

– The effect of stratification is best understood by the behavior
of F(ε, z), highlighted in Fig. 3. F(ε, z) is all positive. But
at large ε it becomes insignificant in broad neighborhood of
z = L/2. This reduces the denominator in Eq. (21) and lets
ω2 grow. This in turn results in washing-out finite time mea-
surements of the phenomena under study.

– The ratio of the periods of the fundamental and the first over-
tone modes (2 for unstratified loops) decreases markedly and
approaches 1 with an increasing density-scale height param-
eter. For ρe/ρi = 0.1, ε/π = L/πH = 1.07, and 1.94, the ratio
P1/P2 is 1.81 and 1.64. These are in good agreement with the
observational data of Verwichte et al. (2004), 1.81±0.25 and
1.64± 0.23. The latter are deductions from TRACE observa-
tions, assuming the same density contrast and scale height
parameter.

– The eigenfunctions of stratified loops deviate from the sinu-
soidal profiles of the unstratified ones. Relative deviations
grow with ε and are of are close to a few percent, in general
(see Table 1).
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Fig. 5. a) The fundamental mode (l = 1), b) the first overtone mode (l =
2), and c) the second overtone modes (l = 3) versus z, for unstratified,
ε = 0, (corresponding to H = ∞, L = 100 Mm , say) and stratified,
ε = 2, 5, (corresponding to H = 50 and 20 Mm and L = 100 Mm, say).
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