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Abstract. Damping of MHD waves seems to play an important role in heat-
ing the solar corona. In this respect a magnetized flux tube with a specified
density profile is considered and the singularity of ideal equation of motion in
coronal approximation is removed by introducing the viscous and resistive damp-
ing in the tube. The resultant equations are solved by applying the connection
formula technique. The damping rates are obtained for both inside and outside
of the resonance layer and are commented on. Next, the same problem that
undergoes a longitudinal density stratification is considered. Equations of mo-
tion are expressed by second order differential equations that are separable into
radial and transverse components. The radial equation is solved in thin tube
approximation, while the transverse one is solved numerically.

1. Introduction

Ionson (1978) was first to suggest that the resonant absorption of MHD waves
in coronal plasmas could be a primary mechanism in coronal heating. Since
then, much analytical and numerical work has been done on the subject. In the
absence of resonance, Edwin & Roberts (1983) and Roberts et al. (1984) intro-
duced a formalism that is applicable to the solar coronal oscillations. Karami
et al. (2002; hereafter paper I) studied the full spectrum of MHD modes of os-
cillations in zero-β magnetic flux tubes with discontinuous Alfvén speeds at the
tube’s surface. In the vicinity of singularity, field gradients are large. Recogniz-
ing this, Safari et al. (2006; hereafter paper II) used Sakurai et al. (1991) and
Goossens et al. (1995) method and analyzed the dissipative processes in such
regimes. The frequency shift in the fundamental and first harmonic transverse
oscillations in the coronal loops was first observed by Verwichte et al. (2004).
Possible factors that cause the shift in frequency and change the oscillation
properties of the loop are investigated by different authors. The effects of slow
variations of the cross sectional area on the oscillations of a loop is investigated
by Nasiri (1992). Van Doorsselaere et al. (2004) investigated the effect of longi-
tudinal curvature on quasi modes of a typical coronal loop. They found that the
frequencies and damping rates of ideal quasi modes were not influenced much by
the curvature. Andries et al. (2005) studied the effect of density stratification
on coronal loop oscillations, and conclude that longitudinal mode numbers are
coupled due to the density stratification. Here, we use analytical and numerical
methods to understand the effect of the longitudinal density variation on the
coronal loops oscillations.
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The layout of the paper is as follows: In Sec. 2. the equations of motion, the res-
onance absorption and coronal loop oscillations in thin layer approximation are
included. In Sec. 3. the effect of longitudinally density stratification on coronal
loop oscillations are presented. Concluding remarks are devoted to Sec. 4.

2. Equations of Motions

The linearized MHD equations for a zero-β, but resistive and viscous plasma are

∂δv

∂t
=

1

4πρ
{(∇× δB) × B + (∇× B) × δB} +

η

ρ
∇2δv, (1)

∂δB

∂t
= ∇× (δv × B) +

c2

4πσ
∇2δB, (2)

where δv and δB are the Eulerian perturbations in the velocity and the magnetic
fields; ρ, σ, η and c are the mass density, the electrical conductivity, the viscosity
and the speed of light, respectively.

2.1. Resonance absorption and coronal loop oscillations

We first assume that the equilibrium density is a function of r only, ρ(r). In
the next section we relax this restriction and assume a longitudinal density
stratification. A constant magnetic field is assumed along the z axis, B =
Bẑ. It is also assumed that there is no initial steady flow inside or outside of
the tube and the density scale heights are much larger than the dimensions of
flux tube, so that the gravity stratification is negligible. Viscous and resistive
coefficients, η and σ respectively, are constants. For a variable density, ρ(r), a
singularity develops wherever the local Alfvén frequency becomes equal to the
global frequency of the mode. The relevant radial wave number vanishes and
resonant absorption takes place. Let us denote the radius of the tube by R
and a radius beyond which the resonance occurs by R1 < R. The thickness of
the inhomogeneous layer, a = R − R1, will be assumed to be small and will
be arbitrarily taken to be of the order of R/10. The choice of density profile
is also unimportant. We will assume constant density, ρi, in 0 ≤ r ≤ R1; a
second constant density; ρe < ρi, in r ≥ R; and linearly decreasing density in
R1 ≤ r ≤ R. In r < R1 and R < r, viscosity and resistivity will be neglected
and solutions of Eqs. (1) and (2) will be taken from paper I. In R1 < r < R,
within which the singularity occurs, viscosity and resistivity will be restored
and solutions will be found by expanding Eqs. (1) and (2) about the singular
point. Finally, interior and exterior solutions will be connected with those of
the resonant layer by connection formulae of Sakurai et al. (1991a)

2.2. Dispersion relation and damping rate

From paper I and II, in the absence of dissipations, all components of δv and the
transverse components of δB are expressible in terms of δBz only. The latter,
in turn, is the solution of a second order differential equation. Thus,

k2

r

d

dr

[

r

k2

dδBz

dr

]

+ (k2 −
m2

r2
)δBz = 0, (3)
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where k2 = ω2/v2

A−k2
z , and vA(r) = B/

√

4πρ(r) is the local Alfvén speed. Here
we have assumed an exponential φ, z and t dependence, exp[i(mφ+kzz−ωt)]
for any component of δv and δB.

In the interior region, r ≤ R1, solutions of Eq. (3) are

δBz =







Im(|ki|r), k2
i < 0, r ≤ R,

Jm(|ki|r), k2
i > 0, r ≤ R, k2

i = ω2/v2

Ai
− k2

z ,
Km(ker), k2

e = k2
z − ω2/v2

Ae
> 0, r > R,

(4)

where Jm, Im, and Km are Bessel and modified Bessel functions of the first kind,
and the second kind, respectively. The jump conditions across the boundary for
δBz and δvr are (see paper II)

[δBz] = 0, (5)

[δvr] = −πω̃
1

|∆|

m2

ρ(rA)r2

A

BzδBz. (6)

Here R1 < rA < R, is the radius at which the singularity occurs and k2(rA) = 0;

ω̃ = ω + iγ, where γ is the damping rate; and ∆ = −B2 d
dr (k2

ρ )|rA
. Substituting

the fields of Eq. (4) in jump conditions and eliminating the arbitrary amplitudes
of the wave, foreseen initially inside and outside of the boundary layer, gives the
dispersion relation

−
1

ke

K ′

m(|ke|R)

Km(|ke|R)
+

1

ki

J ′

m(|ki|R1)

Jm(|ki|R1)
− iπ

1

|∆|

m2

ρ(rA)r2

A

= 0. (7)

In principle ω̃ = ω + iγ is expected to be found as a solution of Eq. (7). In
particular for γ ≪ ω and thin boundary approximation, which assumes (R −
R1)/R = a ≪ 1, Eq. (7) can be expanded to give damping rate (see paper II)

γ = −

{

πm2

ω2

nml(ρi − ρe)

a

R2

}

/
d

dω

{

1

ke

K ′

m(|ke|R)

Km(|ke|R)

1

ki

J ′

m(|ki|R)

Jm(|ki|R)

}

. (8)

The results for surface waves are the same as those for body waves except that
Jm is replaced by Im. The two waves exhibit differences, for Jm and Im behave
differently at the boundary. We also note that each surface mode is designated by
only two wave numbers, (m, l) corresponding to φ and z directions, respectively.
As typical parameters for a coronal loop, we adopt radius = 103 km, length =
105 km, ρi = 2 × 10−14 gr cm−3, ρe/ρi = 0.1, B = 100 G. For this parameter
one finds vAi

= 2000 km s−1, vAe
= 6400 km s−1 and ωA = 2 rad s−1.

In Fig. 1 the frequency, ωnml, and the spectral damping rate, γnml/ωnml,
for body waves are plotted versus l. The frequency increases with increasing n
and l. For (n, m) = (1, 1), the spectral rates have a minimum at l ≈ 15 and
a maximum at l ≈ 45. For (n, m) = (2, 1), the minimum is cut off and the
maximum is shifted to l ≈ 75. For (n, m) = (3, 1) both minimum and maximum
are cut off and there is only a declining branch. The reason for decreasing rates
at higher l values is the shift of the maximum amplitude of waves away from the
boundary layer towards the axis of the tube. For surface waves, specified by two
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mode numbers (m, l), ωml and γml/ωml of a thick and thin tube are presented
in Paper II. The inverse of the spectral rate is the number of oscillations taking
place before the wave is completely attenuated. For thick and thin tubes, and
m = 1 and 1 ≤ l ≤ 10, this number is about 1.6 and 4.8, respectively (Safari et
al. 2006). The observed values of Nakariakov et al. (1999) and Goossens et al.
(2002) from TRACE data, are 3 or 4.
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Figure 1. Body modes: ωnml (solid lines) and γnml (dashed lines) versus l
for m = 1 (kink) modes. Auxiliary parameters are: the tube radius 103 km,
the tube length 105 km, B = 100 G, ρi = 2 × 10−14 grcm−3, ρe/ρi = 0.1.
Frequencies are in units of the interior Alfvén frequency, ωA = 2 rad s−1.

3. The Effect of Longitudinal Density Stratification on Coronal Loop
Oscillations

In this section, we are interested in the effects of density stratification with
height ρi(z) and ρe(z) for the interior and exterior of the loop, respectively.
Time and φ- dependence for perturbed quantities is exp[−i(Ωt − mφ)] and the
dissipative terms are neglected. With these assumptions, Eqs. (1) and (2) give
the following equation for δBz

(

1

r

∂

∂r
r

∂

∂r
+

∂2

∂z2
−

m2

r2

)

δBz +
Ω2

v2

A

δBz = 0. (9)

This is a wave equation for δBz with the variable speed vA(z). It could be solved
by the separation of variables. Let

δBz = Ψ(r)Z(z). (10)

Equation (9) splits into
(

d2

dr2
+

1

r

d

dr
−

m2

r2

)

Ψ(r) + k2Ψ(r) = 0, k2 =
Ω2

v2

A|ǫ=0

− κ2

z, (11)

(

d2

dz2
− k2

)

Z(z) +
Ω2

v2

A

Z(z) = 0, (12)
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where ǫ is the scale height and is in Eq. (13). Each of Eqs. (11) and (12)
are actually a pair for inside and outside of the tube. They are to be solved
simultaneously for the values of Ψ(r), Z, κz, and Ω.

We assume

ρ(ǫ, z) = ρi(ǫ)f(ǫ, z), r < a
= ρe(ǫ)f(ǫ, z), r > a

(13)

where ρi(ǫ) and ρe(ǫ) are the interior and exterior densities at the footpoints
and a is the radius of the loop. In the approximation of an isothermal loop in a
constant gravity, f(ǫ, z) = exp(− ǫ

π sin πz
L ), ǫ = L/H, and H is the scale height.

Interior solutions of Eq. (11) are the same as in Eq. (4). Imposing the boundary
conditions of paper I give

1

ki

J ′

m(|ki|R)

Jm(|ki|R)
−

1

ke

K ′

m(|ke|R)

Km(|ke|R)
= 0, (14)

Here we study Eq. (14) for thin stratified loops by numerical techniques. For
a/L ≪ 1 and m ≥ 1 the dispersion relation of Eq. (14) gives

Ω = κzB[2π(ρi(0) + ρe(0))]−1/2. (15)

See also Edwin & Roberts (1978), Hasan & Sobouti (1987), Karami et al. (2002),
Van Doorsselaere et al. (2004), Dı́az et al. (2004). Substituting Eq. (15) in Eq.
(12) yields

d2Z

dz2
+

4πΩ2

B2

ρi(0) + ρe(0)

2
F (ǫ, z)Z(z) = 0, F (ǫ, z)

=
2ρi(ǫ, z) − ρi(0) + ρe(0)

ρi(0) + ρe(0)
. (16)

Using a numerical code, based on shooting method, Eq. (16) is solved for
eigenvalues and eigenfunctions. In Fig. 2 the fundamental and the first overtone
frequencies, Ω1 & Ω2, respectively, and their ratio are plotted as functions of
ǫ. Both frequencies show monotonous increase with increasing ǫ. For small ǫ’s
Ω1 has a steeper slope than Ω2, but both approach each other as ǫ increases.
The ratio P1/P2 begins at 2 for ǫ = 0 and decreases to one at large ǫ’s. The
longitudinal part of the eigenfield, Z(z), is plotted in Figs. 2. For odd l values
as ǫ increases the middle antinode gradually flattens and eventually bifurcate
into two humps with a dip in between. For both l = 1 & 3 this happens for
ǫ ≥ 3π. The larger the epsilon the deeper the dip becomes. For both even and
odd l’s, the antinodes move towards the footpoints and away from each other
with increasing ǫ.

4. Concluding Remarks

In this paper we studied the effects of damping MHD waves on the modal struc-
ture of a magnetized flux tube. The presence of the viscous and resistive dis-
sipations remove the singularity in the ideal differential equations of motion.
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Figure 2. Left: The frequencies, Ω1 and Ω2, and the ratio of P1/P2, are
plotted versus ǫ/π. Auxiliary parameters are: the tube length 100a, B =
100 G, and density contrast ρe/ρi = 0.1. Right: a) The fundamental modes
(l = 1), b) the first overtone modes (l = 2), and c) the second overtone modes
(l = 3), for non-stratified, ǫ = 0, and stratified, ǫ/π = 3, 15, versus z.

The solutions are obtained by applying the connection formula technique to the
boundaries of the thin resonance layer located inside the tube and undergoing an
appropriate boundary conditions. The damping rates obtained are in agreement
with the data obtained by the TRACE. We also considered a longitudinally
density stratified flux tube and solved the corresponding linearized differential
equations of motion both by perturbation theory and by numerical analysis.
Our results for realistic values of the coronal loops parameters are in agreement
with those obtained by the observations.
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