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Among the possibilities for close binary formation is the suggestion 

of "Fabian, Pringle, and Rees (1975). They invoke a tidal process in 

which the energy from the relative orbital motions of the two unbound 

stars is transferred into the normal modes of non-radial oscillations 

of one or the other member. Press and Teukolsky (1977, hereafter PT) 

analyse this tidal process in some detail and give mathematical ex- 

pressions for the energy transfer and the capture cross-section. 

Here we briefly summarize their work. 

The energy transfer to stellar oscillations of the primary star 

having mass M 1 and radius R 1 due to a perturbing companion star 

having M 2 and R 2 can be written as 

AE = 2~2 Zn ] An (~°n)[2 ' (1)  

and 

v 

An "(~0n ) -- ~ 0~n~ ~VU (~o) dv , (2) 
o 

where the time integration has been effected from -~ to +m and sum- 

mation is over the normal modes. In equation (2) D is the density, 

(w) is the time Fourier transform of U (r, t), the potential of 

the companion, and~nare normal modes. PT have also reduced the energy 

equation in terms of the product of a dimensional quantity and a 

dimensionless function. 

2 2 2 ~ + 2 
GM 1 M 2 R 1 

AE = (. - - )  ( ) ( ) T~(O), (3)  
RI M~I Z Rmi n 

~=2,3,... 

where ~ is the spherical harmonic index and Rmi n is the periastron 

distance. The dimensionless parameter n is defined by 
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M 1 % Rmi n 3/2 

= ( M1 + M2 ) ( R1 )" (4) 

The quantity n measures the duration of periastron passage, relative 

to the hydrodynamic time of the star: large ~ means slow passage. In 

equation (3) the dimensionless function Ti(n) determines the energy 

deposition by the Z- pole tides. For mode analysis in equation (2) 

PT have used the method described by Robe (1968). Lee and Ostriker 

(1986), follow Cox (1980). 

In this communication we decompose the eigendisplacements of a 

normal mode into irrotational and a solenoidal components (Sobouti, 

1981) 

where 

~:~ +g , (5) ~p ~g 

- V x (r) 
~p ~ p ~ ' (5a) 

= + ~ V x A = I V x V x (r X (r)) (5b) 
~g 0 ~ ~g P ~ ~ g 

Here X (r) and X (r) are two scalars, A = Vx (~X) is a vector 
p ~ g - ~g - g 

potential, and ~ is a unit vector in the radial direction. Substitu- 

tion of equations (5) in equation (2) gives 

1 
A ( W )  = fP  ( - V  X + -  V x A ) VUdv 
n n ~ P 0 ~ ~g 

= fXp _V P -V U)dv - f ~V ( -V x ~gA ) Udv ,  (6 )  

where  each  te rm i s  i n t e g r a t e d  by p a r t s  and t he  i n t e g r a t e d  t e rms  have 

been  pu t  equa l  to  z e r o .  The s e c o n d  i n t e g r a l  in  e q u a t i o n  (6)  i s  ob -  

v i o u s l y  z e r o .  The f i r s t  i n t e g r a l  s i m p l i f i e s  f u r t h e r  by n o t i n g  t h a t  

0 i s  s p h e r i c a l y  symmet r i c  and V2U = O. For U i s  t he  p o t e n t i a l  o f  t he  

companion a t  p o i n t s  w i t h i n  t he  p r i m a r y  and s a t i s f i e s  L a p l a c e ' s  e q u a ,  

t i o n .  Thus 

An(Wn ) = f Xp (~)  do dr  Dr ~-~ dv.  (7)  

We conclude that the gravitational field of the companion excites the 

linear motions within the primarythrough their p-components. The 

accompanying u-motions are of course excited but through the interme- 
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diary of the p-motions. Thus, it should not be surprising to conclude 

at this premature stage that the contributions of the p-modes to the 

energy deposition, AE, of equation (I), is larger by far than those 

of the g-modes, a prediction well born out by our numerical calcula- 

tions, and others. 

Another noteworthy point: That the interaction is between !p 

and VU is due to the fact that both fields are derived from scalar 

potentials. Had the perturbing force been derived from a vector po- 

tential (e.g. in magnetic interactions) then ~ -motions would have -g 

entered the play at the expense of the exclusion of ~p. 

We show T2(N) and T3(n) v s . N for polytropic indices, n = 1.5, 

2, 2.5, 3, 3.25, 3.5, and 4 in Figure(1). Our results are nearly in 

agreement with those of Lee and Ostriker in the overlapping range of 

data. As regards the computations we calculate modes by a Rayleigh 

Ritz variational technique. Lee and Ostriker do it Dizembowski's 

(1971) way. PT, follow Robe (1968). 
2 

The capture cross-sectio=, O, or impact pa~meter, R (O=~R ) 
o' o 

is calculated for the above polytropes in term of the relative velo- 

city of the binary members at infinity, V~. Results shown in Figure 

(2) are again in agreement with Lee and Ostriker for polytropes, 

n = 1.5, 2, and 3. Let the dependence of R on Voo be a power law 
o 

Ro=CV~ ~. We find that for V = iOkm/s, ~ increases form 1.O6 for 

n = 1.5 to 1.09 for n = 3, and remains constant for N >3. This means 

that the cross-sections for n >3 polytropes show the same velocity 

dependence as n = 3. 
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Fig. l. The dimensionaless functions T2(~) and T3(~) which determine 
the amount of energy deposition during the two-body encounter by 
quadrupole and octupole tides, respectively, for (a) n=].5, (b) n=2, 
(c) n=2.5, (d) n=3, (e) n=3/25, (f) n=3.5. 
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Fig.2. Tidal capture impact parameters in units of R I as a fun- 
ction of the relative velocity at infinity for the encounter 
between identical stars for polytropes n=l.5, 2, 2.5, 3, 3.25, 
3.5, and 4. 


