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1 INTRODUCTON 

This paper supplements number II in the series devoted to a variational for­
mulation of nonequilibrium ensemble theories. In papers I and II maximum 
entropy distribution functions were obtained asp= z-1exp( -x/kT), where 
x, in general, was a time dependent solution of either Liouville's equation, 
for classical systems1 , or of vonNeumann's equation, for quantum mechani­
cal systems2 • Here we give an example to elucidate the notions developed so 
far. The example is an ensemble of spin ! paramagnets, initially not in ther­
modynamic equilibrium. The density matrix describing the time evolution 
of such a state is obtained in section 2. The ensuing thermodynamic func­
tions are discussed in section 3. The laboratory preparation of the ensemble 
is elaborated on in section 4. References to equation numbers of papers I 
and II are preceeded by the same roman numerals. 

2 DESCRIPTION OF THE SYSTEM 

An electron in a magnetic field B in z-direction has the hamiltonian H = 
-! liwu., where w is Larmor's frequency and u 's here and below are Pauli 
matrices. In the notation of paper II the four eigensolutions of vonNeu­
mann's equations, 

iii :X= [H, xJ, (1) 

are 

[ 1 0 ] 1 x(ll) = 0 0 = 2(1 + u.), (2a) 

x(12) = [ ~ ~ ] exp(iwt) = ~u+exp(iwt), (2b) 

x(21) = xl(12) = ~u-exp( -iwt), (2c) 

[ 0 0 ] 1 x(22) = 
0 1 

= 2(1- u.), (2d) 

where I is the unit 2 X 2 matrix. Out of this complete set of solutions we 
construct the following positive definite and hermitian matrix 

p = z-1exp( -xfkT), (3a) 

where the exponent matrix, x, is the linear combination of the eigenmatrices 
of Eqs. (2), 

x = -~liw{,Bu.- ~[au+exp(iwt) + a'u-exp(-iwt)]}. (3b) 

The combination x(ll) - x(22) = u, is used in Eq. (3b). The other 
combination x(ll) + x(22) = I, trace-orthogonal to u., contributes a con­
stant factor to p and is absorbed in the partion function Z. The factor 
!liw is included to give x and kT the dimensions of energy in concordance 
with the conventions of thermodynamics. The eigenvalues of X are ±!liwA, 
A = (,82 + a' a)!. For the partition function one obtains 
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Z = exp(hw>.j2kT) + exp( -hw>./2kT) = 2cosh(hw>.j2kT). (3c} 

Equations (3a, b, c) complete our description of the most general density 
matrix for a nonequilibrium ensemble of spin t paramagnets. The physical 
significance of the constants f3, a and a' and their determination from the 
constraints imposed on the system will become clear when we discuss the 
thermodynamic variables. Let us only point out that f3 = 1 and <> = a' = 0 
gives the familiar canonical density matrix of equilibrium ensembles. 

3 THERMODYNAMIC FUNCTIONS 

3.1 Invariants of the system 

The foremost of these invariants is the partition function. From this we 
define Helmholtz' potential 

F 

X 

-kTinZ = -kTincoshx, 

hw>./2kT, >. = ({32 +<>'<>)~. 

By Eq. (II. 27) the entropy is 

s = -aFjaT =-FIT- kxtghx. 

An increase in eit:l-Er,8 or act• results in a decrease in the entropy, 

(4a) 

(4b) 

(5a) 

asja{32 = as;a(a'a) = ).- 1aSja>. = -kx2 jcosh2 x < 0. (5b) 

We shall see shortly that higher values of these parameters do indeed imply 
more orderly systems. By Eq. (II.28) the average < x > is 

X= kT2alnZjaT = TS +F. (6) 

By Eq. (II.30), the internal energy is 

U = -kTalnZja{3 = f3>.- 2 (TS +F). (7) 

These thermodynamic relations are identical to those of equilibrium cases 
except for the presence of >. and (3. More invariants can be constructed as 
various functions of Z. 

3.2 Magnetization 

The z-component of the magnetization vector, M = t l-'6 < u >, l-'6 = Bohr 
magneton, is invariant, 

1 
M, = zl-'6 < u, >= -(l-'6/hw)(f3/>.2 )(TS +F). 

To find thetramJa"se components we use Eqs. (II.34). 

~1-'6 < u+ >= -(2kT!Jb/hw)a!nZjaaexp(-iwt) 

(1-'6/hw)(a' j>.2 )(TS + F)exp(-iwt), 

-3-

(8) 

(9a) 



M- = (!lb/liw)(a/>.2 )(TS + F)exp(iwt). (9b) 

Adding and subtracting Eqs. (9) gives 

M. = (Pb/liw)>.- 2 (TS + F)(<>rcoswt + <>;sinwt), (lOa) 

(lOb) 

where <>r and <>; are the real and imaginary parts of<>, respectively. Time 
variations in Eqs. (9) and (10) are the major new features of the present 
ensembles and are worthy of a comment. A spin vector 8, in a magnetic 
field precesses about the field in a sense independent of the sign of S,. In a 
collection of spins the phases of the precessions are, in general distributed 
randomly and lead to vanishing transversecomponents of the magnetization 
vector. This corresponds to <> = <>' = O, which is the case of equilibrium 
thermodynamics. If, however, there is a partial coherence among the phases 
of precession of individual spins, thetrarJ.SVErSe components of M will be 
nonzero. The projection of M in the xy - plane will describe a circle. The 
larger the I <>I, the higher the degree of phase coherence and the larger the 
magnitude of M- transvetse. This additional knowledge on M implies a more 
orderly system and therefore a lesser entropy. Equation ( 5b) is a mathemat­
ical expression of this feature. 

4 LABORATORY PREPARATION OF A CO­
HERANT PARAMAGNET 

We assume an almost ideal system with very weak interactions among the 
individual spins, therefore with very long relaxation times. We place the 
substance in a magnetic field in x-direction, say, and wait long enough to 
attain thermodynamic equilibrium. Next we rotate the field to bring it 
into the z-direction. Dynamics of the problem shows that, for time intervals 
shorter than the relaxation time, the substance will be in a state described 
by a time dependent density matrix of Eqs. (3). First we calculate the 
evolution matrix, U(t), which transforms an initial density matrix, po, or an 
initial quantum state vector, vo to p(t) or to v(t). Let the magnetic field be 
in the xz-plane and rotate about the y-axis with the angular frequency 
n. Thus, B = B(cosOt, 0, sinOt), and the hamiltonian, H = -~liw{B.u }, 
where, B is the unit vector in the field direction. Schrodinger's equation 
becomes 

(11) 

From a frame rotating with the field, the hamiltonian will appear time 
independent. This is achieved by transforming Eq. (11) by the unitary 
matrix 

Y = exp( .!.mtuu) = I cos.!.nt + iuusinOt. 
2 2 

(12) 

Thus, let v = Yv1 and H = Y H 1Yt. Equation (11) gives 

• •I 1 (O ) I 1 I, 
tv = 2 u 11 - WtTz v = 2an.uv , (13) 
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where a2 = 0 2 +w2 and n = (-wja =cosO, Of a= sinO,O) is a unit vector 
in the xy-plane. The solution of Eq. (13) is 

u'(t) = exp(-~iatn.u)uo = Icos~at- in.usin~at)uo, (14) 

where u0 = ub = u(t = 0) is an initial value. For this technique of solving 
Schrodinger's equation one may consult the literature on nuclear magnetism 
or electron paramagnetic resonance, e.g. Abragam3 . Transforming Eq.(14) 
back to the nonrotating frame gives 

u(t) = U(t)vo = exp(~iOtuu)exp( -~iatn.u)vo. (15) 

The unitary matrix operating on Vo is the evolution matrix. At Ot = ! ,. 
we stop the rotation. The field will then be in z-direction and one will 
have tat= (1 +w2 j02 )112 .-j4. To economize in writing we further assume 
w2 /0 = 3. This corresponds to tat= !,. and 0 = 4.-/3. The latter is the 
angle between nand the x-axis. Substituting these values in Eqs. (15) gives 

U _ 2_1.(/ . ) _ 2_1. [ exp(iO) 
- - '1 + I<Ty n.u - - '1 ( "O) exp t 

exp( -iO) ] 
-exp( -iO) · (16) 

We are now ready to go back to our paramagnet. Let us assume that 
at t = 0, where B is in x-direction and the hamiltonian is -thwu., the 
paramagnet has reached a thermodynamic equilibrium at temperature T . 
The density matrix will be 

Po= z- 1exp(-xu,), z = 2coshx, X= hw/2kT. (17) 
at Ot = t.-, this density will evolve into 

1 -p(2.-) = UpoUt = Z 1exp(-xUu,ul). (18a) 

Substituting for U from Eq. (16) gives 

t [ cos20 -isin20 ] . U u,U = .. 
20 20 

= u.cos20 + uysln20. 1stn -cos (18b) 

After this moment, however, the magnetic field is fixed in the z-direction 
and the evolution will take place through 

u.(t) = exp(~iwtu,) = Icos~wt + iu,sin~wt. (19) 

Considering Eq. (18a) as an initial density matrix for U,(t) gives 

p(t) = U,p(~.-)U.t = z- 1exp(-xU,Uu,utu,t), (20a) 

Substituting for U, from Eq. (19) gives 

U,Uu.utu.t = u,cos20- ~isin20[u+exp(iwt) - U- exp( -iwt)]. (20b) 

The density matrix of Eqs. (20) is of the form of Eqs. (3). We only identify 
fJ = cos20 and <> = isin20. 
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The procedure outlined above for the preparation of a coherent paramag­
net was picked out primarily for its conceptual and computational simplicity. 
For practical purposes one may borrow techniques from N M R spectroscopy, 
by applying radio frequency pulses of controlled duration instead or rotating 
the field or the specimen. Due to various perturbing factors the time de­
pendent states will persist for times shorter than the relaxation time. Any 
measurement of a thermodynamic variable should be carried out in these 
short time intervals. The act of measurement should be expected to destroy 
the state under consideration, and repeated preparations of the state may 
be required. A feasible measurement showing time dependency is that of 
the trarJS~erSemagnetization as discussed in Section 3.2 
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