INTERNATIONAL CENTRE FOR
 THEORETICAL PHYSICS

A LAGRANGIAN FORMALISM FOR NONEQUILIBRIUM ENSEMBLE
Y. Sobouti

INTERNATIONAL ATOMIC ENERGY

AGENCY

UNITED NATIONS EDUCATIONAL, SCIENTIFIC AND CULTURAL ORGANIZATION

International Atomic Energy Agency

and

United Nations Educational Scientific and Cultural Organization INTERNATIONAL CENTRE FOR THEORETICAL PHYSICS

A LAGRANGIAN FORMALISM FOR NONEQUILIBRIUM ENSEMBLES *

Y. Sobouti **

International Centre for Theoretical Physics, Tneste, Italy
and
Atomic Energy Organization, Tehran, Iran.

ABSTRACT

It is suggested to formulate a nonequilibrium ensemble theory by maximizing a timeintegrated entropy constrained by Liouville's equation. This leads to distribution functions of the form $f=Z^{-1} \exp (-g / k T)$, where $g(p, q, t)$ is a solution of Liouville's equation. A further requirement that the entropy should be an addutue functional of the integrals of Liouville's equation, limits the chorce of g to linear superpositions of the nonlinearly independent integrals of motion. Time-dependent and time-independent integrals may participate in this superposition.

MIRAMARE - TRIESTE

August 1989

[^0]
INTRODUCTION

It is a first principle of the statistical mechanics that the ensemble distribution functions satisfy Liouville's equation, $d f / d t=0$. This is a purely dynamical requrement and is a statement of the fact that the system points in an ensemble do not interact. Liouville's equation, however, is a first order differential equation in time and the phase space coordinates, (\mathbf{p}, \mathbf{q}) If $f(\mathbf{p}, \mathbf{q}, t)$ is a solution of the equation, so is any arbutrary but once differentable $F(f)$. Consudering the fact that intial preparations of ensembles can at most specify the values of few macroscopic vanables how does nature choose from such an enomous forage of arbitrariness? Equilibrium stansucal mechanics resolves the dilemma by introducing a second postulate, the principle of equal probablity for all microstates of isolated systems. This is a statistical assumption and falls outside the realm of mechanics. On the other hand, the nonequilibrium statistical mechancs has not come out with an explicit and wholesome statistical assumption of ts own; and perhaps that is why thas not grown much beyond its infancy. The limited success of the nonequilibrium statistical mechanics in explaining linear transport phenomena, hydrodynamic approximations, etc., should, in most cases be credited to the assumptions of local thermodynamic equilibrium and quasistatic processes, and therefore, to the equilibrium statistical mechants.

Balescu " highlights the point as follows: "We may say that equilibrium statistical mechanics is mannly statistical, whereas the nonequilibrium statistical mechanics is manly mechan ical". This need not be so. It is possible to denve nonequilibrium distribution functions from an entropy principie and Liouville's equation as a constraint. Zubarev ${ }^{2)-6)}$ has actually pioneered in this direction. In implementing dynamics, however, he has used the three conservation laws of mass, momentum and energy, rather than the full Liouville equation.

In Section 2 we review a variational derivation of the equilibrium distribution functions as a reminder. In Section 3 we summarize some features of Luouville's equation and the eigenvalue problem associated with it for later references. In Section 4 we propose an action integral for nonequilibrium ensembles, and derive and solve the Euler-Lagrange equation for the distribution functions. The action is the time integral of a Gibbs entropy constramed by Liouvile's equation and the normalization integral for the distribution functions. In Section 5 we study the thermodynamics emerging from these considerations. In Section 6 we treat an example from simple harmonic potentials as an illustration and in Section 7 we give concludang remarks.

2. A BACKGROUND REVIEW

Equilibrium ensemble theories are, traditionally, developed from the Gibbs-Tolman principle of equal probability for the microstates of isolated systems. It is known ${ }^{n}$, however, that the same results can be obtamed by maximizing a Gibbs entropy.

$$
\begin{equation*}
S=-k \int f \ln f d \Gamma, \quad \Gamma=d p d q, \tag{1}
\end{equation*}
$$

subject to the constraints imposed on the ensemble.
Example 1: Microcanonical distributions: One maximizes S subject to the normalization constraint

$$
\begin{equation*}
\int f d \Gamma=1 \tag{2}
\end{equation*}
$$

In a variational procedure one considers $I=\int h d \Gamma, h(f)=-k f \ell n f+\alpha f$, where α is a Lagrange multipher. One varies f by $\delta f(\mathbf{p}, \mathbf{q}) \ll f$, calculates the first order vanations, $\delta I=$ $\int(d h / d f) \delta f d \Gamma$. One requires δI to vanish for all δI and obtains

$$
\begin{equation*}
\frac{d h}{d f}=-k \ln f+\alpha-k=0 \tag{3}
\end{equation*}
$$

This has the solution $f=$ constant, that is, equal probability for all states (p, q) of the system.
Example 2: Canonical distributions: One maximizes S subject to the normalization condition and a constant mean energy

$$
\begin{equation*}
\int E f d \Gamma=<E> \tag{4}
\end{equation*}
$$

Again one multiplies the constraints (2) and (4) by the constants α and ($-\beta$), respectively, and adds to Eq.(1) to obtain an I-integral. One varies f and lets $\delta I=0$. Thus $I=\int h d \Gamma, h=$ $k f \ln f+\alpha f-\beta f E$, and

$$
\begin{equation*}
d h / d f=-k \ln f-k+\alpha-\beta E=0 \tag{5}
\end{equation*}
$$

Eq.(5) has the solution

$$
\begin{equation*}
f=Z^{-1} e^{-\beta E}, \quad Z=\int e^{-\beta E} d \Gamma \tag{6}
\end{equation*}
$$

It should be noted that the derivation presented above, by no means, relies on entropy increase in actual themodynamic processes nor implies it. In fact the question here is not how a distribution function evolves in tume, but how nature chooses an appropriate static distribution from a vast number of such solutions. The answer is, through a minimum principle (for minus S), a stunt that works in most branches of physics.

3. LIOUVILLE'S EQUATION

Let $f(\mathbf{p}, \mathbf{q}, t)$ be a time dependent distribution function, where (\mathbf{p}, \mathbf{q}) is the collection of all canonical momenta and coordinates of the system. f satisfies Liouville's equation

$$
\begin{equation*}
d f / d t=f+[f, H]=0 \tag{7}
\end{equation*}
$$

where H is the Hamiltonian. As noted earlier Liouville's equation is a first order differental equation. If f is a solution then any once differentiable $F(f)$ is a solution, for $d F / d t=(d F / d f)(d f / d t)=$ $\mathbf{0}$. The derivative $d F / d f$ should exist at all ($\mathbf{p}, \mathbf{q}, \ell$) for the argument to hold

The eigensolutions of Eq.(7) will be needed. For this purpose let \mathcal{H} be the Hilbert space of the square integrable complex valued functions of phase coordinates, $\{g(p, q) \in \mathcal{H}\}$. The inner product in \mathcal{H} is defined as $(g, f)=\int g^{*} f d \Gamma=$ finite, $g, f \in \mathcal{H}$. We also define Louville's operator, \mathcal{L}, as $\mathcal{L} f=-i[f, H]$. It can easily be verified by integrations by parts that \mathcal{L} is hermituan in \mathcal{H}, and an eigenvalue equation may be set up

$$
\begin{equation*}
C f_{i}(\mathbf{p}, \mathbf{q})=\omega_{i} f_{2}(\mathbf{p}, \mathbf{q}), \quad \omega_{i}=\text { real }, \quad\left(f_{i}, f_{j}\right)=\delta_{i j} \tag{8}
\end{equation*}
$$

With each f_{4} there is associated a time-dependence $\exp \left(-t \omega_{2} t\right)$. This eigenvalue problem is discussed extensively by Prigogine ${ }^{8)}$ and Sobouti ${ }^{9,103}$. Here, we summarize some salient features.

That the eigenvalues, ω_{i} are real and the eigenfunctions, f_{1}, are orthogonal in \mathcal{H} follows from the hemiticity of \mathcal{L}.
If $\omega_{1} \neq 0$

1) f_{1} is complex, and $\int f_{3} d \Gamma=0$
2) If $\left(\omega_{4}, f_{4}\right)$ is an eigensolution so are $\left(-\omega_{4}, f_{1}^{*}\right)$ and $\left((n-m) \omega_{1}, f_{4}^{* m} f_{4}^{n}\right), r_{1} m=$ integres
3) If (ω_{i}, f_{i}) and (ω_{j}, f_{j}) are eigensolutions so is ($\omega_{i}+\omega_{j}, f_{1} f_{j}$)
4) Any $f_{i}^{*} f$ is a constant of motion.

If $\omega_{1}=0$
5) f_{0} can be chosen real and $\int f_{0} d \Gamma \neq 0$.

Because of the property (1) above no ($f_{1}, \omega_{4} \neq 0$) nor any linear combinations of them can give an all positive real probability distribution. However, linear superpositions of f_{0} 's and f_{1} 's and their complex conjugates can give acceptable distribution functions.

All eigenvalues, whether zero or not, are infinitely degenerate. This is evident from the properties (2) and (5). The spectrum of ω is, in general, continuous, discrete or both. An example of all discrete spectrum is that corresponding to the simple harmonic potential, $\phi=\frac{1}{2} \Sigma k_{1} q_{t}{ }^{2}$. In this case one may also prove the completeness of the set of the eigenfunctions and arrange them in an orthonormal set ${ }^{11)}$ Completeness and orthogonality of the eigenset will be assumed for all potentals. This enables one to use the eigenset as a basis for \mathcal{H} and by so doing decompose it into the direct product of subspaces, $\mathcal{H}_{1} \otimes \mathcal{H}_{2} \otimes \ldots$, where \mathcal{H}_{1} is spanned by the eigenvector f_{1} and is orthogonal to other \mathcal{H},'s. This feature will be used in discussing the addtivity of the entropy.

4. A VARIATIONAL FORMULATION OF NONEQUILIBRIUM PROBLEM

The concepts and procedures presented below are closely parallel to those of the conventional lagrangian formulations of mechanics and fields In a time interval (t_{1}, t_{2}) define a
time integrated entropy as follows. This time integration is a mathematical provision only. It will turn out that for conservative and isolated systems that we are dealing with, S is constant. And $S=\left(t_{2}-t_{1}\right) S$ becomes the same concept and with similar implications as the conventional entropy.

$$
\begin{equation*}
S=\int_{t_{1}}^{t_{2}} S d t=-k \int_{t_{1}}^{t_{2}} \int_{\Gamma} f \ln f d \Gamma d t \tag{9}
\end{equation*}
$$

Postulate 1: Evolution of the system from t_{1} to t_{2} will take place through that distribution function which renders S maximum, satisfies Liouville's equation, and remains normalized for all tumes

In other words, to find a statistical and mechanical distribution function one should maximize Eq.(9) subject to the constraints of Eqs.(7) and (2). Equation (7) is a point constraint to hold for all ($\mathbf{p}, \mathbf{q}, \boldsymbol{t}$). One muliplies in by an undetermined Lagrange multiplier $\lambda(p, q, t$) and integrates over the phase volume and time.

$$
\begin{equation*}
\int_{t_{1}}^{t_{1}} \int_{r} \lambda(\mathbf{p}, \mathbf{q}, t) d f / d t d \Gamma d t=0 \tag{10a}
\end{equation*}
$$

Equation (2) is also a point constraint as far as the time is concerned. One multiplies it by another Lagrange multiplier $\alpha(t)$ and integrates over time.

$$
\begin{equation*}
\int_{t_{1}}^{t_{2}} \int_{r} \alpha(t)(f-1 / \Gamma) d \Gamma d t=0 \tag{10b}
\end{equation*}
$$

One now adds Eqs.(9), (10a) and (10b) to form an I-integral analogous to the action integrals of mechanics or of other branches of physics,

$$
\begin{equation*}
I=\int_{t_{1}}^{t_{2}} \int_{\Gamma} h(f, f, \partial f / \partial \mathbf{p}, \quad \partial f / \partial \mathbf{q}, \mathbf{p}, \mathbf{q}, t) d \Gamma d t \tag{11a}
\end{equation*}
$$

where

$$
\begin{equation*}
h=-k f \ln f+\alpha(t) f+\lambda(p, q, t) d f / d t \tag{11b}
\end{equation*}
$$

The remaining steps are standard. 1) One lets f undergo a change $\delta f(\mathbf{p}, \mathbf{q}, t)$ which vanushes at t_{1}, t_{2} and at the boundary of the phase space. The corresponding denvatives of f change by $\delta(\partial f / \partial t)=\partial(\delta f) / \partial t$, etc. 2) One substitutes these variations in Eqs.(11) and calculates δh and δI to the first order in δf In doing so one eliminates the time and space derivatives of δf by integrations by parts and letting the integrated terms equal to zero by virtue of the boundary restrictions on δf, and arrives at the following Euler-Lagrange equation

$$
\begin{equation*}
\frac{\partial h}{\partial f}-\frac{\partial}{\partial t} \frac{\partial h}{\partial(\partial f / \partial t)}-\frac{\partial}{\partial q} \cdot \frac{\partial h}{\partial(\partial f / \partial q)}-\frac{\partial}{\partial \mathbf{p}} \cdot \frac{\partial h}{\partial(\partial f / \partial p)}=0 \tag{12}
\end{equation*}
$$

Substituting Eq (11b) in (12) gives

$$
\begin{equation*}
-k \ln f+(\alpha-k)-\{\dot{\lambda}+[\lambda, H]\}=0 \tag{13}
\end{equation*}
$$

For brevity let

$$
\begin{align*}
\dot{\lambda}+[\lambda, H] & =G(\mathbf{p}, \mathbf{q}, t) / T, \tag{14a}\\
\alpha(t)-k & =k \ln z(t), \tag{14b}
\end{align*}
$$

where T is a constant introduced for convenience later. Eq (13) now has the following solution

$$
\begin{equation*}
f=z^{-1} e^{-G / k T} \tag{15}
\end{equation*}
$$

- To determine z and G one applies the constraints. Substituting f in Eq.(7) gives

$$
\dot{G}+[G, H]=-k T z / z=-k T \chi(t),
$$

where $\chi(t)$ stands for \dot{z} / z and is a function of time only. Formal solutions of Eq.(16) are

$$
\begin{gather*}
z=Z \exp \left(\int^{t} x d t\right), \tag{17a}\\
G=g(p, q, t)-k T \int^{t} x d t, \tag{17b}
\end{gather*}
$$

where Z is a constant and g is a solution of the homogeneous Liouville's equation.

$$
\begin{equation*}
d g / d t=\dot{g}+[g, H]=0 \tag{18}
\end{equation*}
$$

Substituting Eq.(17) in (15) gives

$$
\begin{equation*}
f=Z^{-1} e^{-g / k T} \tag{19}
\end{equation*}
$$

The terms containing x drop out and Z emerges as a time-independent partition function,

$$
\begin{gather*}
Z=\int e^{-\Omega / k T} d \Gamma=e^{F / k T}, \tag{20a}\\
F=-k T \ln Z \tag{20b}
\end{gather*}
$$

That Z is a constant can be double checked easily,

$$
\begin{equation*}
d Z / d t=(k T)^{-1} \int(d g / d t) e^{-g / k T} d \Gamma=0 \tag{20c}
\end{equation*}
$$

where we have used Liouville's theorem that an element $d \Gamma$ of phase space volume is invariant in time. The constancy of Z means that one may go back to Eq.(10b) and begin the argument with a constant multipher, α. The χ-term of Eqs.(16) and (17) then disappear, z gets replaced with Z and G with g. There remains to ascertain that the Lagrange multipier $\lambda(p, q, t)$ of Eq.(14a) exists; for the variational derivation of Eq.(19) requires its existence. This is simple. Equation (14a) wth $G=g$ and g a solution of Louville's equation has the solution

$$
\begin{equation*}
\lambda=g(\mathbf{p}, \mathbf{q}, t) t / T \tag{21}
\end{equation*}
$$

The crucial question of what to choose for the exponent function, $g(p, q, t)$ is discussed below.
Additivity of entropy: Equilibrium entropies are extensive variables. The same will be expected from the nonequilibrium ones. The concept, however, requires generalization. For the sake of argument let us consider the canonical ensemble for a system, consistung of two non interacting components 1 and 2. Thus, $f=Z^{-1} \exp \left[-\left(E_{1}+E_{2}\right) / k T\right]$. One observes the following. (a) The total phase space and the total Hilbert space of the phase space functions are the direct products of two subspaces. Thus, $\Gamma(\mathbf{p}, \mathbf{q})=\Gamma_{1}\left(\boldsymbol{p}_{1}, q_{1}\right) \otimes \Gamma_{2}\left(p_{2}, \mathbf{q}_{2}\right)$ and $\mathcal{H}(\Gamma)=\mathcal{H}_{1}\left(\Gamma_{1}\right) \otimes \mathcal{H}_{2}\left(\Gamma_{2}\right)$ (b) \mathcal{H}_{1} and \mathcal{H}_{2} are orthogonal in the sense of Eq.(8). (c) E_{1} and E_{2} are in \mathcal{H}_{1} and \mathcal{H}_{2}, respectively, and are orthogonal. In fact they are eigenfunctions of Liouville's equation corresponding to a zero eigenvalue. (d) The exponent in the distribution function is a linear superposition of these integrals. Under these circurnstances the partition function gets factorized into $Z=Z_{1} Z_{2}$ and the addutivity of entropy follows. In nonequilibrium problems we will retain as much of the properties (a)-(d) as possible.

Postulate 2: The entropy of a system is a real valued additive functional of the independent integrals of Liouville's equation.

In systems composed of non interacting components the postulate is no more than the addrtivity requirement of Gibbs. In general, however, the integrals may be constants of motion, such as the energy and angular momentum, or time dependent such as the eigenfunctions of Eq .(8). The number of (nonlinearly) independent integrals is $2 N$, the dimensionality of the phase space. They will be independent if their jacobian determinant is non zero. The additivity postulate severely limits the choice of the exponent function. Thus, in terms of the eigenfunction of Eq.(8) one has

$$
\begin{equation*}
g(p, q, t)=\sum_{i=1}^{N}\left[\beta_{i} f_{i} f_{i}+\alpha_{i} f_{i} \exp \left(-i \omega_{i} t\right)+\alpha_{i}^{*} f_{i} \exp \left(\imath \omega_{i} t\right)\right], \tag{22}
\end{equation*}
$$

where β_{4} and α_{4} are $2 N$ constants. Equations (19) and (22) contain equilibrium ensembles as special cases. Setring $g=$ constant or E, both legitimate eigensolutions of Liouville's equation and special cases of Eq.(22), gives the microcanonical or canonical distributions. In Section 5 we will return to constants (β, α) and discuss a method of obtaining them. On passing, however, let us note that a canonical ensemble employs only one constant, β, the coefficient of $f_{i}^{*} f_{1}=E$.

The nonequilibrium distributions and their technique of derivation presented here have similarities to and differences with those of Zubarev ${ }^{\text {6 }}$. He maximizes an entropy constrained by the Founer transforms of the conservation laws of energy, momentum, and the particle numbers. Since the conservation of these fundamental quantities is a consequence of Loouville's equation, Zubarev's approach does indeed take into account a good deal of the dynamics of the problem, but not all of it. Even so, the closed form of the conservation equations is, in general, based on certain simplifyng assumptions. In Zubarev's formulanon one assumes the existence of Bogoliubov's hierarchy of relaxation times of different orders of magnitude. MacLennan's ${ }^{11,12)}$ distributions are identical to those of Zubarev. His approach, however, is to consider systems in contact with an
external bath and assume an entropy flow into the system characterized by a temperature field, a mass flow, etc.

THERMODYNAMICS CONSIDERATIONS

5.1 Global invariants

Let h be a solution of Liouville's equation, $d h / d t=0$. The integral $\int h d \Gamma$ is time invariant. Proof

$$
\begin{equation*}
(d / d t) \int h d \Gamma=\int(d h / d t) d \Gamma=0, \quad \text { QED } \tag{23}
\end{equation*}
$$

where we have used Liouville's theorem that a phase space volume, $d \mathrm{r}$, is constant in tume. By Eq.(23) the following are invariants of the system

$$
\begin{equation*}
Z=\int e^{g / k T} d \Gamma=e^{-F / k T}, \tag{24}
\end{equation*}
$$

$$
\begin{gather*}
S=Z^{-1} \int \mathrm{e}^{-\theta / k T}(g / T+k \ln Z) d T=k \partial(T \ln Z) / \partial T=-\partial F / \partial T, \tag{25}\\
U=Z^{-1} \int\left(p^{2} / 2 m+\phi\right) e^{-g / k T} d \Gamma, \quad \phi=\text { potential energy } \tag{26}\\
G=Z^{-1} \int g e^{-g / k T} d \Gamma=T S+F \tag{27}
\end{gather*}
$$

The invariance of S implies that the thermodynamics involved is a reversible one. Furthermore, with S constant Eq.(9) reduces to $S=\left(t_{2}-t_{1}\right) S$, indicaung the S and S are identical entities and serve the same purpose. The total intermal energy. U, cannot be reduced further without knowing the specific form of g. The last expression for $G=\langle g\rangle$ is interesting. Its relation to other thermodynamic quantities is the same as that of the internal energy in equilibrium thermodynamics. Further along this line one may develop notions similar to the heat capacity and temperature.

$$
\begin{gather*}
C=\partial G / \partial T=T(\partial S / \partial T) \tag{28}\\
T=\partial G / \partial S=(\partial G / \partial T) /(\partial S / \partial T) \tag{29}
\end{gather*}
$$

Needless to say that for $g=E$, Eqs.(24)-(29) are the familiar relations of the equilibrium thermodynamics. For g of Eq.(22), the ensemble average of every term in g is an invariant of the system and can be obtained in terms of the partition function. Thus,

$$
\begin{equation*}
\left\langle f_{1} f_{s}^{*}\right\rangle=Z^{-1} \int f_{1} f_{s}^{*} e^{-\rho / k T} f \Gamma=-k T \partial\left(\ell_{n} Z\right) / \partial \beta_{\mathrm{t}} \tag{30a}
\end{equation*}
$$

Stmilarly

$$
\begin{equation*}
\left\langle f_{1} \pm f_{i}^{*}\right\rangle=-k T\left(\partial / \partial \alpha_{1} \pm \partial / \partial \alpha_{t}^{*}\right) \ell n Z \tag{30b}
\end{equation*}
$$

Equations (30) are expressions of the various macroscopic constraints on the ensemble in question A knowiedge of these constraints will enable one to calculate the constants β and α and thereby construct the distribution function of Eqs.(22) and (19). This point of view bypasses the convention of solving an initial value problem for a time varying system. Instead it places emphasis on the macroscopic conditions imposed on the ensemble.

5.2

Densities in configuration space

Among the local variables of mechanical nature are the following

$$
\begin{aligned}
& \rho=\int f d \mathbf{p}, \text { mass density, } \\
& \rho v==\int f \mathbf{p} \cdot d \mathbf{p}, \text { mass flux densty, } \\
& P=\frac{1}{3}\left\{\int f p^{2} d p-\rho v^{2}\right\}, \text { pressure, } \\
& u=\int f H d p=\frac{3}{2} P+\frac{1}{2} \rho v^{2}+\rho \phi, \text { energy density, } \phi \text { : potentual energy. }
\end{aligned}
$$

These macroscopic variables are solutions of equations of continuity, of Euler's hydrodynamics and of energy flow in the conventional hierarchial scheme. This is because f is a solution of Liouville's equation. More interesting, however, is the entropy densty, $\rho \sigma=-k \int f \ln f d p$. Substituting for f from Eq .(19) and after simple manipulations one obtains

$$
\begin{equation*}
\rho \delta=k \rho[\partial(T \ln Z) / \partial T+T \partial(\ln \rho) / \partial T]=-\rho \partial F / \partial T+k T \partial \rho / \partial T \tag{3}
\end{equation*}
$$

It is remarkable that σ has retained its thermodynamic character of being a function of ρ and T only. It is an implict function of space-time through ρ. In general, the entropy density does not satisfy a macroscopic equation of continuty. Simple calculations show the following

$$
\begin{equation*}
\partial(\rho \sigma) / \partial t+\nabla \cdot(\rho \sigma v)=-\frac{1}{T} \nabla \cdot \int(p-v) g f d p \tag{32}
\end{equation*}
$$

The motion of an element is not strictly adiabatic. At any fixed locality there are entropy fluctuatons not caused by flow terms. However, the time averages of Eq.(32) over different periods, $T_{1}=2 \pi / \omega_{1}$, are ether exactly or nearly equal to zero. Exact cancellatoons will occur if ω_{1} 's are commensurate and the system is exactly periodic. One should, however, bear in mind that the least common multiple of T_{i} 's (if there exists one) are of Poincarè time scales. On the way of illustration, a simple example is given in the next section.
6. EXAMPLE

Let the physical system be a single one dimensional harmonic oscillator (a Deby mode in a crystal lattice, say). Liouville's equation for the Hamiltontan $H=\frac{1}{2}\left(p^{2}+w^{2} q^{2}\right)$ is

$$
\begin{equation*}
\dot{f}=\{H, f\rfloor=-p \partial f / \partial q+\omega^{2} q \partial f / \partial p \tag{33}
\end{equation*}
$$

A complete set of the eigensolutions of Eq.(33) are given by Sobout ${ }^{\text {12 }}$:

$$
\begin{array}{ll}
f_{m n}=E^{m}(p+i \omega q)^{n} & \text { with eigenvalues } \quad s m \omega \\
f_{m n}^{*}=E^{m}(p-i \omega q)^{n} & \text { with eigenvalues }-i \pi \omega \tag{34b}
\end{array}
$$

where $E=\frac{1}{2}\left(p^{2}+\omega^{2} q^{2}\right)$, and $m, n=$ non negative integers. The set is complete. It is orthogonal with respect to n but not to m.

Let the inttal value of the exponent function be

$$
\begin{equation*}
g(p, q, 0)=E+p_{0} p=f_{10}+\frac{1}{2} p_{0}\left(f_{01}+f_{01}^{*}\right) \tag{35}
\end{equation*}
$$

where p_{0} is a constant. The second equality is an expansion of this initial value in terms of the eigenfunctions of Eq.(34). At any later time one has

$$
\begin{gather*}
g(p, q, t)=f_{10}+\frac{1}{2} p_{0}\left(f_{01} e^{-\omega \omega t}+f_{01}^{*} e^{\omega t}\right)=\frac{1}{2}\left(p^{2}+\omega^{2} q^{2}\right)+p_{0} p \cos \omega t+\omega^{2} q_{0} q \sin \omega t,(36 a) \\
f(p, q, t)=Z^{-1} e^{-g / k T} \tag{36b}
\end{gather*}
$$

where $\omega q_{0}=p_{0}$, and by a straightforward integration

$$
\begin{equation*}
Z=2 \pi k T \omega^{-1} \exp \left(\omega^{2} q_{0}^{2} / 2 k T\right) \tag{36c}
\end{equation*}
$$

The ensemble so designed reduces to a canonical one in the limit of $p_{0}=\omega q_{0}=0$.

6.1 Global thermodynamics of Eqs.(36)

The partition function of Eq.(36c) has the dimension $p q$, for f is the probability per unit volume of phase space. It is preferable to make it dimensionless by using ($p / p_{0}, q / q_{0}$) instead of (p, q). With this provision Z is replaced by

$$
\begin{equation*}
z=2 \pi k T\left(\omega q_{0}\right)^{-2} \exp \left(\omega^{2} q_{0}^{2} / 2 k T\right)=e^{-F / k T} \tag{37a}
\end{equation*}
$$

where the second equality is a definition for F. The total entropy and energy are

$$
\begin{gather*}
S=\partial F / \partial T=k+k \ln \left(2 \pi k T / \omega^{2} q_{0}^{2}\right), \tag{376}\\
U=\int E f d \Omega / \omega q^{2}=k T+\frac{1}{2} \omega^{2} q_{0}^{2}=F+T S+\omega q_{0} p_{0} \tag{37c}
\end{gather*}
$$

The following relations may also be verified

$$
\begin{equation*}
T=\partial U / \partial S \tag{37~d}
\end{equation*}
$$

$$
\begin{equation*}
C=\partial U / \partial T=T \partial S / \partial T=k \tag{37e}
\end{equation*}
$$

The relations between z, S, U, T, F, and C are the same as those of the conventional equilibrium thermodynamics. In particular, T may be interpreted as the constant global temperature of the ensemble. Similarly, F and C may be indentified with the free energy and the heat capacity, respectively. The explictt values of the global variables, of Eqs.(37) are the thermodynamic values of the one dimensional harmonic oscillator except for the term $\omega^{2} q_{0}^{2}$. Even this term has precedence in equilibrium theory, if one treats the oscillator as a quantum mechancal one. A quantum oscillator has a zero point energy $\frac{1}{2} h \omega$ and occupres a phase volume $\Delta p \Delta q \simeq 2 \pi h$. On replacing $\frac{1}{2} \omega^{2} q_{0}^{2}$ in the energy Eq.(37c) by $\frac{1}{2} h \omega$ and $\omega q_{0}^{2}=\omega p_{0} q_{0}$ in the entropy Eq.(37b) by $2 \pi \hbar$, one recovers exactly the energy and entropy of the one dimensional quantum oscillator in the high temperature limit. See Morse ${ }^{13}$ for the latter values.

Local thermodynamics of Eqs.(36)

The word local is used to indicate densities in the configuration space. In the notation of Section 5.2 one has

$$
\begin{align*}
\rho & =\int f d p=\omega\left(2 \pi k T^{\prime}\right)^{1 / 2} \exp \left[-\omega^{2}\left(q+q_{0} \sin \omega t\right)^{2} / 2 k T\right] \tag{38a}\\
\rho v & =\int f p d p=-\rho \omega g_{0} \cos \omega t, \quad v=-\omega q_{0} \cos \omega t \tag{38b}\\
u & =\int f E d p=\frac{1}{2} \rho\left[k T+\omega^{2}\left(q^{2}+q_{0}^{2} \cos \omega t\right]\right. \tag{38c}\\
P & =\int f p^{2} d p=\rho v^{2}=k T \rho \tag{38d}
\end{align*}
$$

These local variables are exact and closed solutions of the macroscopic conservation laws of mass momentum and energy. Here, the energy equation takes the following form

$$
\begin{equation*}
u+\nabla \cdot[(u+P) v]=0 \tag{39}
\end{equation*}
$$

Interpreting $u+P$ as the enthalpy density, this is identical with the conventronal flux defined on the basis of thermodynamic considerations and without recourse to statistical mechanics. See Landau and Lifshitz ${ }^{14)}$. The entropy density is

$$
\begin{equation*}
\rho \sigma=-k \rho\left[\ln \rho-\frac{1}{2} \ln \left(2 \pi k T / \omega^{2} g_{0}^{2}\right)-\frac{1}{2}\right] \tag{40}
\end{equation*}
$$

Eq (32) reduces to

$$
\begin{equation*}
\frac{\partial}{\partial t}(\rho \sigma)+\nabla(\rho \sigma v)=-2 k \nabla\left[\rho v \omega^{2}\left(q+q_{0} \sin \omega t\right)^{2} / 2 k T\right] \tag{41}
\end{equation*}
$$

7. CONCLUDING REMARKS

It is proposed to consider the time integrated entropy as a 'action' for tume varying ensembles The formulation of the nonequilibrium statistical mechanics then becomes a lagrangian
formalism, common to most branches of physics. Dynamies is accounted for by using Liouville's equation as a constraint in extremizing the action integral. A clear distinction should be made between this maxtmization of entropy and its increase in actual irreversible processes in the course of time. Actually, for pedogogical reasons irreversibulity is left out in the present paper. This is done by using the time reversible Liouville's equation. Irreversibility and along with it the time increase of the entropy and transport phenomena could be incorporated into the formalism in a number of ways: By introducing non conservative terms in Liouville's equation, by replacing it by alternatives of Fokker-Planck or master equation type, by letting the system in contact with external reservous, by coarse-graining the distributtons in time or in space, etc. The quantum version of the formalism is easily obtainable. In fact, when applied to systems with finite number of states (an Ising model of spin chain, say), the problem is easier to cope with than the classical systems with a continuum of states. These aspects will be presented elsewhere.

Acknowledgments

The formulation presented here was conceived in the course of a discussion with Dr. M.R H. Khajehpour on the role of dynamics in statusucal mechanucs and has greatly benefited from his later comments. The author also wishes to thank Professor A. Sjölander for stimulaung discussion, Professor Abdus Salam, the International Atomic Energy Agency and UNESCO for hospitality at the International Centre for Theoretical Physics, Trieste, where this work was completed, and the Research Council of Shiraz University and Atomic Energy Organization of Iran for instututional and financial support.

1) R. Balescu, Equilibrium and NonEquilibrium Statistical Mechantcs (Wiley Interscrence, London. 1975).
2) D.N Zubarev, Dokl. Akad. Nauk SSSR 140 (1961) 92 ISov Phys Doklady 6 (1962) 776
3) D N. Zubarev, Dokl. Akad. Nauk SSSR 162 (1965) 532 [Sov Phys. Doklady 10 (1965) 452.
4) D N. Zubarev, Dokl. Akad. Nauk SSSR 162 (1965) 794 [Sov Phys. Doklady 10 (1966) 526.
5) D.N. Zubarev, Dokl. Akad. Nauk SSSR 164 (1965) 537 [Sov. Phys Doklady 10 (1962) 850
6) D N. Zubarev, NonEquilibrium Statistical Thermodynamics (Consultants Bureau, New York, 1974).
7) E.T. Jaynes, "Information theory and statistical mechanics", in Statustical Physics, Brandeis Lectures, Vol.3, 181 (Benjamin, New York, 1963).
8) I. Pngogine, NonEquilibrium Statistacal Mechanics (Wiley Interscience, New York, 1962)
9) Y. Sobouti, Astron. Astrophys. 210 (1989) 18.
10) Y Sobouth, Astron. Astrophys. 214 (1989) 83.
11) J.A. MacLennan, Jr., Phys. Fluids 4 (1961) 1319.
12) J.A. MacLennan, Jr., Advan. Chem. Phys. 5 (1963) 261.
13) P.M. Morse, Thermal Physics (Benjamin/Commings, London, 1969).
14) L.D. Landau and E.M. Lifshitz, Flud Mechanics (Pergamon Press, 1987).

[^0]: * To be submitted for publication
 - Permanent address: Department of Physics and Bıruni Observatory, Shiraz University, Shiraz 71454, Iran

