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ABSTRACT 

It is suggested 10 fonnufale a noncquilibrium ensemble theory by maximizing a limo
integrated entropy constrained by Liouvdle's equation. This leads to distribution functions of the 
fonn f = z-'exp( -gfkT), where g(p,q,t) is a solution of Liouville"s equation. A further 
requirement lhat the entropy should be an add1Uve funcuonal of the integrals of Lwuville 's equation. 
limits the cho1ce of g to linear superpositions of the nonlinearly independent integrals of motion. 
lime-dependent and limo-independent integrals may participate in this superposition. 
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I. INTRODUCTION 

It is a first principle of the statistical mechanics that the ensemble distribution funcuons 
sat1sfy Liouville'sequali~ df/dt = 0. This ts a purely dynamical requtrement and is a statement 
of the fact that the system points m an ensemble do not interact. Liouville's equation, however, ts 
a first order dtfferential equation in time and the phase space coordmates, ( p, q) U j( p, q, t) is 
a soluuon of the equation, so is any arbitrary but once dJ.fferenttable F( j). Constdering the fact 
that imtial preparations of ensembles can at most specify the values of few macroscopic vanables, 
how does nature choose from such an enonnous forage of arbitrariness? Equihbrium statJsbcal 
mechanics resolves the dJlernma by introducing a second posaulate, the principle of equal proba
bthty for all microstates of isolated systems. This is a statistical assumption and falls outside the 
realm of mechanics. On the other hand. the nonequilibrium statistical mechamcs has not come out 
with an explicit and wholesome statistical assumptiOn of Its own; and perhaps that is why n has not 
grown much beyond its infancy. The limited success of the nonequilibrium statistical mechanics m 
explaining linear transport phenomena. hydrodynamic approximations. etc .• should. in most cases, 
be credited to the assumptions of local thennodynamic equilibrium and quasistatic processes, and 
therefore. to the eqwlibrium statistical mechamcs. 

Balescu n highlights the point as follows: "We may say that equilibrium statisucal me
chanics is mamly statistical, whereas the nonequilibrium statiStical mechanics 1s mamly mechan
ical". This need not be so. It is possible to denve nonequibbrium disui.bution functions from an 
entropy princ1ple and Liouville's equation as a constraint Zubarev l}-6) has actually pioneered 
in this directton. In implementing dynamics. however. he has used the three conservation laws of 
mass. momentum and energy. rather than the full Liouville equation. 

In Section 2 we ~view a variational derivation of the equilibrium dismbubon funcuons 
as a reminder. In Section 3 we summarize some features of Liouville's equation and the eigen
value problem associated with it for later references. In Section 4 we propose an action integral for 
nonequilibrium ensembles. and derive and solve the Euler-Lagrange equation for the dlstnbuuon 
functions. The action is the time mtegral of a G1bbs entropy constramed by Liouville's equauon and 
the normalization integral for the distribution functions. In Section 5 we study the thermodynam
ics emergmg from these considerations. In Section 6 we treat an example from simple harmoruc 
potentials as an illustration and in Secuon 7 we give concludmg remarks. 

2. A BACKGROUND REVIEW 

Equilibrium ensemble theories are. traditionally. developed from the Gibbs-Tolman prin
ciple of equal probability for the microstates of isolated systems. It is known 7), however, that the 
same results can be obtamed by maximizmg a Gibbs entropy, 

S=-kjtentd:f, r=dpdq, (I) 
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subject to the consttaints imposed on the ensemble. 

Example 1: 
ization constraint 

Microcanonical distributions: One maximtzes S subject to the normal-

Jtdf'=l (2) 

In a variational procedure one considers I = J h ctr ,h(n = -kf ln f +of, where a 1s a 
Lagrange multiplier. One vanes f by 6j( p, q) < f, calculates the first order vanations, 61 = 
f(dh/df)6f df'. One requires 6I to vanish for all6I and obtains 

dh 
df =-klnf+n-k=O (3) 

This has the solution f =constant. that is. equal probability for all states (p, q) of the system. 

Example2: Canonical distributions: One maximizes S subject to the nonnalization 
condition and a constant mean energy 

J Efdf' =< E> ( 4) 

Again one multiplies the constraints (2) and (4) by the constants a and ( -fJ), respectively, and 
addsto Eq.(l) to obtain an I -integral. One varies f and lets 6I = 0. Thus I = f h df', h = 
kf lnf + <>!- {JfE,and 

dhldf= -kinf- k+ c.- {JE=O ( 5) 

Eq.(5) has the solution 

t= z-t.-~8. z = J .-~Edr (6) 

It should be noted that the derivation presented above, by no means, relies on entropy mcrease in 
actual thennodynamic processes nor implies it. In fact the question here is not how a disblbution 
function evolves m ume, but how nature chooses an appropriate static dtstributlon from a vast 
number of sucb solutions. The answer is, througb a mtmmum principle (for mmus S). a stunt that 
works in most branches of physics. 

3. LIOUVILLE'S EQUATION 

Let /( p, q, t) be a time dependent distribution function, where ( p, q) is the collection 
of an canonical momenta and coordinates of the system. f satisfies Liouville's equation 

dfldt=f+lt.HI=O, (7) 

where H is the Hamiltonian. As noted earlier Liouville's equation is a first order differenual equa
<ion. Iff is a solunon then any once differentiable F( f) is a solullon, for dF I dt = ( dF I df)( df I dt) = 
0. The derivative dF/df should exist at all ( p, q, !) for the argument to hold 
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The eigcnsolutions of Eq.(7) will be needed. For th1s pmpose let 7-t be the Hilben space 
of the squan: mtegrable complex valued functJons of phase coordmates. {g(p,q) E 1!}. The 
inner product in 1l is defined as (g,f) = J g•f dr = finite, g,f E 1!. We also define Llouvdle's 
operator, C. as C f = -i[f, H]. It can easily be verified by integrations by parts that Cis hermil13n 
in 1!, and an eigenvalue equation may be set up 

.Cf.(p,q)=w,f,(p,q), w,=real, (f.,fJ)=6.1 (8) 

With each f. there is associated a time-dependence exp( -lW,t). This eigenvalue problem is dis
cussed extensively by Prigogine 1' and Sobouti 9),tO). Here, we summarize some salient features. 

That the eigenvalues, w, arc real and the eigenfunctions./.. arc orthogonal in 1{. follows 
from the benniticity of r.. 
lfw,;IO 

Ifw, = 0 

I) f. is complex, and f f, df' = 0 

2) If (w,,/,) is an eigensolution so arc ( -w,,J;) and (( n- m)w,,j,••J:), n, m = 
integres 

3) If (w,,/.) and (wJ,fJ) are eigensolunons so is (w, + w1 , f.JJ) 

4) Any f: j. IS a constant of motion. 

5) fo can be chosen real and f fodf' ;I 0. 

Because of the property (1) above no ( J.,w, 1 0) nor any linear combinations of them can give an 
all positive real probability dtsmbution. However, linear superposiuons of fo 's and f, 's and their 
complex conjugates can g~ve acceptable distribunon functions. 

AU eigenvalues, whether zero or not. arc infinitely degenerate. Tins is evident from the 
properties (2) and (5). The spectrum of w is, in general, continuous, discrete or both. An example 
of all discrete spectrum is that corresponding to the simple hannonic potential,~ = ~l: k.q, 2 • In 
this case one may also prove the completeness of the set of the eigenfunctions and arrange them 
m an onhonormal set 11) Completeness and onhogonality of the eigenset will be assumed for all 
potentials. nus enables one to use the eigenset as a basis for 1{. and by so domg decompose it into 
the direct productofsubspaces,1{.1 ®1!2 ® ... ,where 1l, is spanned by the eigenvector f, and is 
orthogonal to other 1l 1 's. nus feature will be used in discussing the additivity of the entropy. 

4. A VARIATIONAL FORMULATION OF NONEQUILIBRIUM PROBLEM 

The concepts and procedures presented below are closely parallel to those of the con
ventional lagrangtan formulations of mechamcs and fields In a 11me interval ( t1, h) define a 
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time integrated entropy as follows. This time integration is a mathematical provtsion only. It will 
tum out that for conservative and isolated systems that we arc dealing wuh. S is constant And 
S = (t2 - t 1)S becomes the same concept and with s1milar implications as the conventional 
entropy. 

1.. 1''fr S = S dl = -k fln f dr dl 
tt t1 r 

(9) 

Postulate I: Evolution of the system from t 1 to t 2 will take place through that distnbution function 
which renders S maximum, satisfies Liouville•s equation. and remains normalized for all ttmes 

In other words. to find a .statistical and mechanical distribution function one should max
imize Eq.(9) subject to the consrraints of Eqs.(7) and (2). Equation (7) is a point constraint to 
hold for all (p,q,t). One multiplies it by an undetennined Lagrange multiplier ~(p,q,t) and 
integrates over the phase volume and time. 

1~ r ~<p,q,t> dftdl dr dl = o 
t1 Jr (lOa) 

Equation (2) is also a point constraint as far as the time. is concerned. One multiplies it by another 
Lagrange multiplier a( t) and integrates over time. 

1 .. r a(t) (f- 1/r) dr dl = 0 
It lr (lOb) 

One now adds Eqs.(9), (lOa) and (lOb) to form an /-integral analogous to the action integmls of 
mechanics or of other bnlnchcs of physics, 

when: 

I=[' ( h(f,J,af/ap, af/aq,p,q,t) dr dl, 
It Jr 

h = -kf lnf + Ot(t)/ + ~(p,q, t) df/dl 

( !Ia) 

(II b) 

The rcmaming steps arc standard. 1) One lets f undergo a change 6/(p,q,t) which vamshes 
at It, !1 and at the boundary of the pbase space. The corresponding denvatives off change by 
6(af/iJt) = a(6f)fiJt, etc. 2) One substitutes these variations in Eqs.(ll) and calculates 6h 
and 61 to the first order in 1Jf In doing so one elimmates the time and space derivanves of 6! 
by integrations by pans and letting the mtegrated terms equal to zero by virtue of the boundary 
restncttons on 6 f. and arnves at the foUowmg Euler-Lagrange equation 

ah _ i. f!h _<!_ • ah _ _<!_ • ah = 
0 at iJt a<afliJt> aq a<aflaq> ap a<af!ap> 

Substituting Eq (lib) in (12) gives 

-Hn/+(a-k) -{5.+ [~.Hl} = 0 
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(12) 

( 13) 

-

For brevity let 

5. + p, H) = G(p, q,t)/T, 

Ot(t) - k = klnz(t), 

( 14a) 

( 14b) 

where TIS a constant introduced for convenience later. Eq (13) now has the followmg solution 

f = z-1e-GfiT (15) 

To detcnnine z and Gone applies the constraints. Substituting f in Eq.(7) gives 

G+ [G, H)= -k Tz/z = -k Tx<t), - ( 16) 

where x< t) stands for Z/ z and is a function of time onty. Formal solutions of Eq.(l6) are 

z = Zexp(j' xdl), 

G=g(p,q,t)-kT J'xdl, 

where Z IS a constant and g is a solution of tbe homogeneous Liouvme·s equation. 

dgfdl = g + [g, H) = 0 

Substituting Eq.(l7) in (15) !lives 
f = z-• e-o/lT 

The tenns containing x drop out and Z emerges as a time-independent partition function, 

(17a) 

(17b) 

(18) 

(19) 

Z = f e-oftT dJ' = eFftT, (20a) 

F=-kTlnZ (20b) 

That Z is a constant can be double checked easily, 

dZ/dl = <krrt J<dgfdl>•...,'lT dr = o. (20c) 

where we have used Liouville •s theorem that an element dT of phase space volume is invariant in 
time. The constancy of z means that one may go back to Eq.( lOb) and begin the argument wtth a 
constant mulupher. a. The x-tenn ofEqs.(l6) and (17) then disapp::ar. z gets replaced wtth Z and 
G w1th g. There remains to ascertain that the Lagrange multiplier .>.( p, q, t) of Eq.(l4a) c:xtsts; 
for the variatiOnal derivauon ofEq.(l9) requires its CXJStence. Thts is stmple. Equation (14a) wtth 
G = g and g a soluuon of Liouville's equation has the solution 

~ = g(p,q,t)t/T 
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The crucial question of what to choose for the exponent function, g( p, q, t) is discussed below. 

Additivity of entropy: Equilibrium entropies are extensive variables. The same will be expected 
from the nonequilibrium ones. 1be concept, however, requires generaltzanon. For the sake of 
argument let us consider the canonical ensemble for a system, consisnng of two non interacting 
components I and 2. Thus./= z-1 exp[ -(E1 + E,)fkT]. One observes the followmg. (a) 
The total phase space and the total Hilben space of the phase space functions are the direct products 
of 1WO subspaces. Thus, r(p,q) = r1(P1,q1) ® r2(J12,CJ2) and "/t(r) = "/l1 (r1) ® "/l,(r,) 
(b) 1!1 and1l2 an:onhogonalinthesenseofEq.(8). (c)E1 andE,. an:in1l1 and7l,,respec1ively, 
and arc orthogonal. In fact they are eigenfunctions of Liouville's equation corresponding to a zero 
eigenvalue. (d) The exponent in the distribution function is a linear superposition of these integrals. 
Under these circumStanCeS the panition function gets factorized into Z = Zt Z2 and the additivity 
of entropy follows. In nonequilibnum problems we will retain as much of the propenies (aHd) as 
possible. 

Postulate 2: 1De entropy of a system is a real valued additive functional of the independent inte
grals of Uouville's equation. 

In systems composed of non interacting components the postulate is no more than the 
additivity requirement of Gibbs. In general, however, the integrals may be constants of motion, 
such as the energy and angular momentum. or time dependent such as the eigenfunctions of Eq.(8). 
The number of (nonlinearly) mdependent in1egrals is 2 N, the dimens1onalily of the phase space. 
They will be independent if their jacobian detenninant R non zero. The additivity postulate severely 
limits the choice of the exponent function. Thus, in tenns of the eigenfunction of Eq.(8) one has 

N 

g(p,q,t) = L£/J,f:h + o.j,exp( -iw,t) + a;J: exp(tw,t)] , (22) 
~1 

where 13. and a. ~ 2 N constants. Equations (19) and (22) contain equihbrium ensembles as 
special cases. Setting g =constant or E. both legitimate eigensolutions of LIOuville's equation and 
specia1 cases of Eq.(22), gives the microcanonical or canonical disttibutions. In Section 5 we wdl 
return to constants (/J,o) and discuss a method of obtaining them. On passing, however, let us 
note that a amonical ensemble employs only one constant, fJ, the coefficient of J; f, = E. 

Tbe nonequilibrium disuibutions and their technique of derivation presented here have 
similarities to and c:bfferences with those of Zubarev 6>. He maximizes an entropy constrained by 
the Founer 1ransforms of the conservation laws of energy, momentum, and the panicle numbers. 
Since the conservation of these fundamental quantities is a consequence of Liouville's equation, 
Zubarev 's approach does indeed take into account a good deal of the dynamiCS of the problem, but 
not all of it. Even so, the closed fonn of the conservation equations is, in general, based on certain 
simplifymg assumptions. In Zubarev's formulauon one assumes the existence of Bogoliubov's 
hieran:hy of~laxauon times of different orders of magnitude. MacLennan's II),t 2) distributions 
are identical to those of Zubarev. His approach, however, is to constder systems in contact w11h an 
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extemal bath and assume an entropy flow mto the system charactenzed by a temperature field, a 
mass flow. etc. 

5. THERMODYNAMICS CONSIDERATIONS 

5.1 Global invariants 

Let h be a solution of Uouville's equation. dhfdt = 0. The mtegral J h elf is time 
invariant Proof 

(d/tft) I h df' = l<dh/tft)df' = 0, QED (23) 

where we have used Liouville's theorem that a phase space volume, df', is constant in ume. By 
Eq.(23) the following are invariants of the system 

z =I .. ,1<1' df' = ~-F/1<1', 

S= z-1 I .-ofltT(g/T+klnZ) df' =ldJ(TlnZ)/iJT= -iJF/iJT, 

u = z-1 I<P' /2m+ 4>>·-·'I<T df'. "'= po1en1ial energy 

G= z-1 I g.-.ttr ctr =TS+F 

(24) 

(25) 

(26) 

(27) 

The invariance of S implies that the thennodynamics involved is a reversible one. Fwi:hermore, 
with S constant Eq.(9) reduces to S = ( tz - tt )S, indicaung the S and S are identical entities and 
serve the same purpose. The total internal energy, U. cannot be reduced further without knowing 
the specific form of g. 'The last expression for G = < g > is mteresting. Its relation tO other 
thennodynamic quantities is the same as that of the internal energy in equilibrium thermodynamics. 
Funher along this hne one may develop notions similar 10 the heat capacity and temperature. 

0 = iJGfiJT = T(8S/iJT), (28) 

T = iJG/iJS = (iJG/iJT)/(iJS/iJT) (29) 

Needless to say that for g = E. Eqs.(24H29) are the familiar relations of the equihbrium thenno
dynamics. For g of Eq.(22), the ensemble average of every term in g is an invariant of the system 
and can be obtamed in tenns of the pantttan function. Thus, 

Srmilarly 

< f,J; > = z-1 I f,t;e-oi>T tr = -k T iJ(i.nZ)/iJfJ, 

< f, ± J; > = -k T(iJ/iJa, ± iJfiJa;)tnZ 
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Equations (30) are expressions of the various macroscopic constramts on the ensemble m question 
A knowledge of these constraints will enable one to calculate the constants fJ and a and thereby 
construct the distribution function ofEqs.(22) and (19). This point of view bypasses the convennon 
of solving an initial value problem for a time varying system. Instead tt places emphasis on the 
macroscopic conditions imposed on the ensemble. 

5.2 Densities in configuration space 

Among the local variables of mechanical nature arc the following 

p = f f dp. mass densily. 

p v == f f p.dp. mass flux denstly. 

p = t{J fpl dp- pvl}.pressure. 

u = f f H dp = t P + i p v2 + ~.energy densily. cb: pooenbal energy. 

lbese macroscopic variables are solutions of equattons of continuity. of Euler's hydrodynamtcs and 
of energy flow in the conventiOnal hierarchial scheme. This is because f 1s a solution of Ltouvtlle 's 
equation. More interesting. however. is the entropy denStty.pa = -k f f lnfdp. Substituting for 
f from Eq.(19) and afler simple manipulations one oblllins 

pa = kp{il(T fnZ)/ilT+ Til(lnp)/ilT] = -p ilF/ilT + kT 8pfilT (31) 

It is remarkable that a has retained its thermodynamic character of being a funchon of p and T 
only. It is an implic1t function of space-time through p. In general. the entropy dens1ty does not 
sattsfy a macroscopic equauon of continuuy. Simple calculations show the following 

il(pa)/111 + 'il- (pav) = -~'il- /<P- v)g f dp (32) 

The motion of an element is not stnctly adiabauc. At any fixed locality there arc entropy flucltua
bons not caused by flow terms. However. the time averages of Eq.(32) over different penods. 
T. = 271'/w •• arc euherexacdy or nearly equal to zero. Exact cancellanons wiJI occur if w,'s are 
commensurate and the system is exacdy periodtc. One should. however, bear in mtnd that the least 
common multiple ofT. 's (if there exists one) arc of Poincare time scales. On the way ofillusuation. 
a simple example is given in the next section. 

6. EXAMPLE 

Let the phystcal system be a single one dimensional hannomc oscillator (a Deby mode 
in a crystal lattice, say). Liouville's equation for the Hamiltoman H = t ( p2 + w2 q2 ) is 

i= [H,fl = -p8f/8q+w2q8f/8p 
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(33) 
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A complete set of the etgensoluuons of Eq.(33) are g~ven by Soboutt 121: 

f.,..= E'"(p+ iwq)" with eigenvalues na:.~, 

1;,." = F"(p- swq)• with eigenvalues - Jtt.J, 

(34a) 

(346) 

where E = }<ri + w2 q2 ). and m, n= non negative integers. The set IS complete. It is orthogonal 
with respect to n but not tom. 

Let the imnal value of the exponent function be 

g(p,q,OJ = E +PoP= !to+ },.u., + '"'}, (35) 

where po IS a constant. The second equality is an expanston of this initial value m tenns of the 
eigenfuncuons of Eq.(34). At any later time one has 

I I 
g(p,q, t) = /Jo + 2po(fote-1Wt+ lOt e .. t) = z<v2 +w2 q2

) +popcoswt+w2qoq sin wt. ( 36a) 

j(p,q,t) = z-l e-g/I:T (366) 

where wq0 = po. and by a srraightforward integrauon 

Z = 2w k T w-• exp(w2 q~f2kT) (36c) 

The ensemble so designed reduces to a canonical one in the tun it of po = wqo = 0. 

6.1 Global thermodynamics or Eqs.(36) 

The partition function of Eq.(36c) has the dimensiOn pq. for f ts the probabthty per umt 
volume of phase space. It is preferable to make it dimensionless by using ( p/po, qf qo) instead of 
( p, q). With this provtsion Z is replaced by 

z = 2nkT(wqo)-2 exp(w2 q~/2kT) = e-F/IcT, 

where the second equality is a definition for F. 1be total entropy and energy arc 

S = 8F/ilT = k + k lrl.21rkTfw2 q~), 

U = J Ef<Elfwq' = kT+ }w2q~ = F+ TS+ w I/O Po 

The following relations may also be verified 

T = ilU/8S, 

C = 8U/ilT = T 8S/ilT = k 
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(376) 

(37c) 

(37d) 

(37e) 
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The relations between z, S, U, T, F. and C arc the same as those of the conventional equilibrium 
thermodynamics. In particular. T may be interpreted as the constant global temperature of the 
ensemble. Similarly, F and C may be indentified w1th the free energy and the heat capacity, re
spectively. The explicit values of the global variables, of Eqs.(37) are the thermodynamic values of 
the one dimensional harmonic oscillator except for the term w2 q~ _ Even thts term has precedence 
in equilibrium theory. if one treats the oscillator as a quantum mechanical one. A quantum oscilla
tor has a zero p01n1 energy tAw and occupieS a phase volume A pA q ~ 21rh.. On replacmg tw2 q~ 
m the energy Eq.(37c) by tAw and wq~ = wpoqo in the entropy Eq.(37b) by 21rh. one recovers 
exacdy the energy and entropy of the one dimensional quantum oscillator in the htgh temperature 
limit See Morse 13> for the latter values. 

6.2 Locallhermodynamics of Eqs.(36) 

The word local is used to indicate densities in the configuration space. In the notation of 
Sectton 5.2 one has 

p= J fdp=w(2?rkT)•I2exp[-w2(q+I/OStnwt) 1f2kT] 

pv = J fpdp = -p.>l/0 cos wt, v = -wl/0 cos wt, 

u = J fEdp= ~p[kT+w2 (q2 +q~coswt], 

p = f frldp = pv' = /ffp. 

(38a) 

(38b) 

(38c) 

(38d) 

1bese local variables are exact and closed solutions of the macroscopic conservation laws of mass. 
momentum and energy. Here. the energy equation takes the following fonn 

u+V·[(u+P)v] =0. (39) 

Interpreting u + Pas the enthalpy dens1ty, this is identical with lhe convenuonal flux defined on the 
bas1s of thennodynarmc consKlerations and without recourse to statist1ca.l mechamcs. See Landau 
and Lifshitz 14>. The entropy density is 

[ I 2' I] pa = -kp lnp- 2 tn(21rkT/w q0 )- 2 (40) 

Eq (32) reduces to 

!(pa)+V (pav) =-2kV [pvw2 (q+qosinwt) 2 f2kT] ( 41) 

7. CONCLUDING REMARKS 

It is proposed to consider the time integrated entropy as a •actiOn' for t1me varymg en
sembles The fonnulation of the noneq01hbnum statisllcal mechamcs then becomes a lagrangtan 
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fonnalism. common to most branches of physics. Dynamtcs is accounted for by usmg Liouville's 
equation as a constraint m extremizing the acbon integral. A clear distinction should be made be
tween this maxtmization of entropy and its increase in actual irreversible processes in the course of 
time. Actually, for pedagogical reasons irreversibility IS left out m the present paper. ThiS is done 
by using the time reversible Liouville's equation. Irreversibility and along w1th it the time increase 
of the entropy and transpon phenomena could be mcorporated mto the fonnahsm in a number of 
ways: By mtroducing non conservative tenns in Liouville's equation, by teplacmg 1t by alternatives 
of Fokker-Planck or master equation type, by letting the system in contact with external resetv01rs. 
by coarse-graining the disuibuttons in time or in space, etc. The quantum vers10n of the fonnahsm 
is easily obtainable. In fact, when applied to systems wuh finite number of states (an Ising model 
of spm chain, say), the problem is easier to cope with than the classtcai" systems with a continuum 
of states. These aspects will be presented elsewhere. 
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