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Abstract. The oscillations and wave propagation is studied in a cylindrical model

of coronal loops that undergoes a longitudinal density stratification. Equations

of motion are expressed by second order differential equations that are separable

into radial and transverse components. The radial equation is solved in thin tube

regime. The transverse equation is solved both by perturbation method, for small

density scale heights, and numerically, otherwise.
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1. Introduction

Since the earliest identification of the kink oscillations in coronal loops, reported by

Aschwanden et al. (1999) and Nakariakov et al. (1999), a considerable amount of data

has been analyzed by Aschwanden et al. (2002), Schrijver et al. (2002), and Wang &

Solanki (2004) using the high resolution observations of TRACE, SoHO, Yohkoh, etc.

See Aschwanden et al. (2004) and Nakariakov & Verwichte (2005) for an extended review.

The analysis of the oscillations of nine coronal loops by Verwichte et al. (2004) show

shift in periods, phases, damping times, and distance-dependence of the amplitudes from

those of the simple theoretical models of coronal loops (radially and longitudinally un-

stratified, cylindrical geometries with constant cross sections, constant magnetic fields

along loop axes, constant gravitation, isothermal structures, no initial flows, etc).

There are numerous attempts to arrive at reasonably realistic models: Smith et al.

(1997) and Van Doorsslare et al. (2004) have studied the effect of the curvature of the loop
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on the oscillations frequencies. Terra-Homem et al. (2003) give a detailed discussion of

background flows in the loop. Nasiri (1992) simulates a variable cross section by assuming

a long narrow wedge geometry. Ruderman (2003) removes the degeneracy inherent in

loops of circular cross section by assuming an elliptical one. Díaz et al. (2004) introduce

photospheric line-tying boundary conditions to emphasize the rate of leakage in damping

of the oscillations. This is an extension of the infinite homogenous loops of Edwin &

Roberts (1983). Beliën et al. (1996) find a gap in the continuous spectrum of Alfvén

modes caused by longitudinal stratifications. Mendosa - Briceño et al. (2004) study the

effect of the gravitational stratification. They find 10− 20% reduction in damping times

of oscillations. Del Zanna et al. (2005) simulate 2.5-D compressible MHD oscillations

in connection with solar atmospheric stratifications. They find a strong spreading in

the initially localized pulses along the loop and correspondingly an efficient damping

caused by the variable Alfvén velocity with height. Andries et al. (2005a, b) calculate

damping rate of longitudinally stratified cylindrical loops and conclude that the ratio

of the frequency of the first overtone to that of the fundamental mode is less than 2,

the values for the unstratified loops. They use this ratio to estimate the density scale

height in the solar atmosphere. Arregui et al. (2005) use the numerical code, POLLUX,

to compute the effect of both radial and longitudinal stratification on the resonantly

damped kink oscillations.

Here, we use analytical and numerical methods to study the effects of longitudinal

density variation on loop oscillations. Density variations from interior to the exterior of

the loop is stepwise. The functional form of the longitudinal stratification is, however,

the same for both regions.

Equation of motions, boundary conditions, and the radial solutions are dealt with in

Secs. 2& 3. Thin tube approximation is treated in Sec 4. Concluding remarks are given

in Sec. 5.

2. Equations of motions

The linearized MHD equations for a zero-β plasma are

∂δv

∂t
=

1

4πρ
{(∇× δB)×B + (∇×B)× δB}, (1)

∂δB

∂t
= ∇× (δv ×B), (2)

where δv, δB and ρ are the Eulerian perturbations in the velocity, the magnetic field

and the density, respectively. The simplifying assumptions are:

– Under coronal conditions gas pressure is negligible (zero- β).

– Tube geometry is a circular cylinder with cylindrical coordinates, (r,φ,z).

– There is a constant magnetic field along the z axis, B = Bẑ.
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– There is no initial steady flow in the loop or outside it.

– The equilibrium quantities are independent of φ.

– Time and φ- dependence for perturbed quantities is exp[−i(Ωt−mφ)].

We are interested in the effects of density stratification with height ρi(z) and ρe(z) for

the interior and exterior of the loop, respectively. With these assumptions, Eqs. (1) and

(2) give the following coupled equations for δBz and δvr
(

Ω2

v2
A

+
∂2

∂z2
−

m2

r2

)

δBz

B
=

(

Ω2

v2
A

+
∂2

∂z2

)

1

r

∂

∂r
(r

δvr

iΩ
), (3)

(

Ω2

v2
A

+
∂2

∂z2

)

δvr

iΩ
= −

∂

∂r

δBz

B
, (4)

where vA(z) = B/
√

4πρ(z) is the local Alfvén speed and is different for inside and outside

of the loop. The term δvr/iΩ appearing in Eqs. (4) and (3), is actually the lagrangian

displacement vector in the loop. The remaining components of δv and δB are given by

δvφ =
Ω

mBz
rδBz −

1

im

∂

∂r
(rδvr), δvz = 0, (5)

δBr = −
Bz

iΩ

∂δvr

∂z
, δBφ = −

Bz

iΩ

∂δvφ

∂z
. (6)

See, e. g., Karami et al (2002) and Safari et al. (2005) for details. Let us also emphasize

that the present form of Eq. (4) utilizes the fact that ρ and consequently vA depend only

on z. There is no radial stratification except for a step discontinuity at the surface of the

tube.

Eliminating δvr between Eqs. (4) and (3) gives
(

1

r

∂

∂r
r

∂

∂r
+

∂2

∂z2
−

m2

r2

)

δBz +
Ω2

v2
A

δBz = 0. (7)

This is a wave equation for δBz with the variable speed vA(z). It could be solved by

the separation of variables. Let

δBz = R(r)Z(z). (8)

Equation (7) splits into
(

d2

dr2
+

1

r

d

dr
−

m2

r2

)

R(r) + k2R(r) = 0, k2 =
Ω2

v2
A|ǫ=0

− κ2
z, (9)

(

d2

dz2
− k2

)

Z(z) +
Ω2

v2
A

Z(z) = 0, (10)

where ǫ is in Eq. (14).

Each of Eqs. (9) and (10) are actually a pair for inside and outside of the tube. They

are to be solved simultaneously for the values of R, Z, κz, and Ω.

2.1. Boundary conditions

1. To avoid shock waves at r = a, the lagrangian changes in pressure should be continu-

ous. On account of the zero-β approximation and constancy of B, this reduces to the

requirement of the continuity of δBz . Thus

Rinterior(a) = Rexterior(a). (11)
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2. On account of ∇· δB = 0, δBr should be continuous at r = a. This, gives (Karami et

al 2002)

1

k2
i

dRinterior(kir)

dr

∣

∣

∣

∣

r=a

= −
1

k2
e

dRexterior(ker)

dr

∣

∣

∣

∣

r=a

(12)

3. The footpoints, z = 0 & L, are expected to be nodes. This imposes the conditions

Z(z = 0 & L) = 0. (13)

Equation (11)- (13) give four boundary condition for the two second order differential

Eqs. (9) & (10).

2.2. The density profile

We assume

ρ(ǫ, z) = ρi(ǫ)f(ǫ, z), r < a

= ρe(ǫ)f(ǫ, z), r > a
(14)

where ρi(ǫ) and ρe(ǫ) are the interior and exterior densities at the footpoints and a is the

radius of the loop. f(ǫ, z) is envisaged to be a continuous function of z, with a minimum

at z = L/2 and maxima f(ǫ, z = 0 & L) = 1. In the approximation of an isothermal loop

in a constant gravity and bent into a semicircle with footpoints in the photosphere, one

has (Andries et al. 2005b)

f(ǫ, z) = exp(−
ǫ

π
sin

πz

L
), (15)

where ǫ = L/H and H is the scale height. The density variations for inside an outside

of the loop are governed by the same function f(ǫ, z). In the following we will consider

loops of different scale heights but of the same total mass µi and µe. Thus,

µi = ρi(ǫ)

∫ L

0

f(ǫ, z)dz = ρi(ǫ)(I0(ǫ)− L0(ǫ)), independent from ǫ, or

ρi(ǫ) = µi/(I0(ǫ)− L0(ǫ)) (16)

where I0 and L0 are modified Bessel function of first kind and modified Struve function

(see Gradsbteyn & Ryzbik, 2000). A similar relation holds for the outside of the loop.

3. Solutions of Eqs. (9) and (10)

Interior solutions of Eq. (9) are Jm(|ki|r) for k2
i > 0 or Im(|ki|r) for k2

i < 0. Exterior

solutions are Km(|ke|r) for k2
e < 0 for evanescent waves or, Hm(|ke|r) for leaky decaying

waves. Here we consider the evanescent category. Imposing the boundary conditions of

Eqs. (11) and (12) give

1

ki

J ′

m(|ki|a)

Jm(|ki|a)
−

1

ke

K ′

m(|ke|a)

Km(|ke|a)
= 0, (17)

where, ′, indicates a derivative of a function with respect to its argument. The same

relation holds for surface waves with Jm(|ki|r) replaced by Im(|ki|r). For unstratified
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thin and thick tubes Eq. (17) is analyzed by different authors, e. g., Edwin & Roberts

(1983), Karami et al. (2002) and Safari et al. (2006). Here we study Eq. (17) for thin

stratified loops by perturbational and numerical techniques.

4. Thin tube approximation

For a/L ≪ 1 and m ≥ 1 the dispersion relation of Eq. (17) gives |ki| ≈ |ke|. From the

definition of k2, Eq. (9), one then obtains

Ω = κzB[2π(ρi(0) + ρe(0))]−1/2. (18)

See also Edwin & Roberts (1978), Karami et al. (2002), Van Doorsselaere et al. (2004),

Díaz et al. (2004). Substituting Eq. (18) in Eq. (10) yields

d2Z

dz2
+

4πΩ2

B2

ρi(0) + ρe(0)

2
F (ǫ, z)Z(z) = 0,

F (ǫ, z) =
2ρi(ǫ, z)

ρi(0) + ρe(0)
−

ρi(0)− ρe(0)

ρi(0) + ρe(0)
. (19)

This is an eigenvalue problem weighted by F (ǫ, z), from which one may write down the

following integral expression for Ω2

Ω2 =
B2

2π(ρi(0) + ρe(0))

∫

|dZ/dz|2dz
∫

F (ǫ, z)|Z(z)|2dz
. (20)

Some general relation of Ω2 can be inferred from Eq. (20). In Fig. 1, F (ǫ, z) is plotted

versus z for two values of ǫ. It has maxima at footpionts and a minimum at the apex.

The larger the ǫ, the higher the maxima and the lower the apex. The larger ǫ, the higher

the maxima and the lower the minimum become. For ǫ ≥ 11.602, F (ǫ, z) develops two

roots z1 and z2, say. In the interval z1− z2, F (ǫ, z) is negative. This reduces the integral

in the denominator of Eq. (20) and cause an increase of Ω2 with increasing ǫ. There is

even the possibility of the integral, and thereby Ω2, becoming negative. Our calculations

shows that for ρe/ρi = 0.1 and for the fundamental this happens at ǫ = 30π, such that

Ω2 > 0 for ǫ < 30π and |z2 − z1| < 0.95L

< 0 for ǫ > 30π and |z2 − z1| > 0.95L

At ǫ = 30π, Ω2 has a vertical asymptote. This is

Ω2 → +∞ as for ǫ→ 30π from left

→ −∞ as for 30π← ǫ from right.

This behavior is shown in Fig. 2.

Below Eq. (19) is solved for small density scale heights, by perturbation techniques,

and for arbitrary scale heights, by numerical methods.
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4.1. Perturbation method

The scale parameter is chosen as the perturbation parameter and all variables and equa-

tions are expanded in powers of ǫ. Thus,

Ω = Ω(0) + ǫΩ(1) + · · · , (21)

Z(z) = Z(0)(z) + ǫZ(1)(z) + · · · , (22)

F (ǫ, z) = 1 + ǫ
2ρi(0)

ρi(0) + ρe(0)

(

2

π2
−

1

π
sinπ

z

L

)

+ · · · , (23)

Correspondingly Eq. (19) splits in it zeroth-order and first order components

d2Z(0)

dz2
+

4πΩ(0)2

B2

ρi(0) + ρe(0)

2
Z(0) = 0, (24)

d2Z(1)

dz2
+

4πΩ(0)2

B2

ρi(0) + ρe(0)

2
Z(1) +

8πΩ(0)Ω(1)

B2

ρi(0) + ρe(0)

2
Z(0)

= −
4πΩ(0)2ρi(0)

B2

(

2

π2
−

1

π
sinπ

z

L

)

Z(0), (25)

Solutions of Eq. (24) for Z(0) and Ω(0) with boundary conditions of Eq. (13) are

Ω
(0)
l =

lπ

L
B

√

2

4π(ρi(0) + ρe(0))
, l = 1, 2, 3, ..., (26)

Z
(0)
l (z) =

√

2

L
sin

lπ

L
z, (27)

where l is the longitudinal mode number. The right side of Eq. (25) is a known pertur-

bation term. Multiplying it by Z(0)∗, integrating and reducing it by Eq. (24) gives the

first order correction to Ω

Ω
(1)
l = Ω

(0)
l

ρi(0)

ρi(0) + ρe(0)
(Il −

2

π2
) (28)

where

Il =

∫ L

0

Z
(0)∗
l

1

π
sin

πz

L
Z

(0)
l dz =

2

π2

4l2

4l2 − 1
. (29)

Equation (29) is in agreement with the result of Andries et al. (2005a) ( see Sn in their

Eqs. (3) and (4)). We note that a) Ω(1) is positive, meaning that in loops of the same mass,

the larger the stratification the larger the correction at to the frequencies of unstratified

loop. b) for l ≫ 1 the first order correction tend to zero. c) The ratio of the periods of

the fundamental and the first overtone is

P1

P2
=

Ω2

Ω1

= 2
1 + ǫΩ

(1)
2 /Ω

(0)
2

1 + ǫΩ
(1)
1 /Ω

(0)
1

= 2
1 + ǫ ρi(0)

ρi(0)+ρe(0)
2

15π2

1 + ǫ ρi(0)
ρi(0)+ρe(0)

2
3π2

< 2. (30)

4.2. Numerical method

Using a numerical code based on shooting method Eq. (19) is solved for eigenvalues and

eigenfunctions. In Fig. 3 the fundamental and the first overtone frequencies, Ω1 & Ω2,
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respectively, and their ratio are plotted as functions of ǫ. As anticipated from Eq. (20)

and the behavior of F (ǫ, z), both frequencies show monotonous increase with increasing ǫ.

For small ǫ’s Ω1 has a steeper slope than Ω2, but both approach each other as ǫ increases.

The ratio P1/P2 begins at 2 for ǫ = 0 and decreases to one at large ǫ’s.

The longitudinal part of the eigenfield, Z(z), is plotted in Figs. 4. For odd l values

Figs. 4a & c as ǫ increases the middle antinode gradually flattens and eventually bifurcate

into two humps with a dip in between. For both l = 1 & 3 this happens for ǫ ≥ 3π. The

larger the epsilon the deeper the dip becomes. For both even and odd l’s, the antinodes

move towards the footpionts and away from each other with increasing ǫ.

5. CONCLUSIONS

We study the oscillations of vertically stratified model loops. In thin tube approxima-

tion the resulting eigenvalue problem is solved both by perturbational and numerical

techniques.

– The ratio of periods of fundamental and first overtone modes, (2 for unstratified loops)

decreases markedly and approaches 1 with increasing density scale parameter. This

is in accord with the observational data of TRACE.

– The effect of density stratification is best understood by the behavior of F (ǫ, z). For

small ǫ’s it is all positive. But at large ǫ’s it acquires negative values and there is

the possibility of having Ω2 < 0, which means either dying or exponentially growing

perturbations non-linear regimes.

– For ρe/ρi = 0.1, ǫ = 1.5, and 2.85 the ratio P1/P2 are 1.841 and 1.679, respectively.

These are in good agreement with the observational data of Verwichte et al. (2004),

1.81±0.25 and 1.64±0.23, respectively deduced from TRACE observations assuming

the same density contrast and scale height parameter.

– The behavior of the eigenfunctions for different longitudinal wave numbers is com-

pletely different for unstratified and stratified loops. This is shown in Fig. 4 for l = 1,

2, and l = 3.
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Fig. 3. The frequencies, Ω1 and Ω2, versus ǫ/π. The ratio of P1/P2, is versus ǫ/π.

Auxiliary parameters are: the tube length 100a, B = 100 G, and density contrast ρe/ρi =

0.1.
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