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Abstract. We propose an action-based f(R) modifica-
tion of Einstein’s gravity which admits of a modified
Schwarzschild - deSitter metric. In the weak field limit this
amounts to adding a small logarithmic correction to the
newtonian potential. A test star moving in such a space-
time experiences an excess logarithmic potential leading
to a constant asymptotic speed at large distances. This
speed turns out to be proportional to the fourth root of
the mass of the central body in compliance with the Tully-
Fisher relation. A variance of MOND’s gravity emerges as
an inevitable consequence of the proposed formalism.

1. Introduction

Convinced of cosmic speed up and finding the dark en-
ergy hypotheses not a compelling explanation, some cos-
mologists have looked for alternatives to Einstein’s gravi-
tation (Deffayet et al, 2002, Freese et al, 2002, Ahmed et
al, 2002, Dvali et al, 2003, Capozziello et al, 2003, Car-
roll et al, 2003, Norjiri et al, 2003, 2004, and 2006, Das
et al, 2005, Sotiriou, 2005 and Woodard, 2006). There
is a parallel situation in galactic studies. Dark matter
hypotheses, intended to explain the flat rotation curves
of spirals or the large velocity dispersions in clusters of
galaxies, have raised more questions than answers. Alter-
natives to newtonian dynamics have been proposed but
have had their own critics. The foremost among such the-
ories, the Modified Newtonian Dynamics (MOND) of Mil-
grom (1983 a,b,c) is capable of explaining the flat rotation
curves (Sandres et al, 1998 and 2002) and of justifying the
Tully-Fisher relation with considerable success. But it is
often criticized for the lack of an axiomatic foundation;
see, however, Bekenstein’s (2004 TeVeS theory where he
attempts to provide such a foundation by introducing a
tensor, a vector, and a scalar field into the field equations
of GR.

Here we are concerned with galactic problems. We sug-
gest to follow cosmologists and look for a modified Ein-
stein gravity tailored to suit galactic environments.
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2. A modified field equation

Alternative gravitations are often sought through modifi-
cations of the conventional Einstein-Hilbert action. Let us
begin with the following

S =

∫
[

1

2
f(R) + Lm

]√−gd4x, (1)

where R is the Ricci scalar, Lm is the lagrangian den-
sity of the matter, and f(R) is an, as yet, unspecified but
differentiable function of R. Variations of S with respect
to the metric tensor leads to the following field equation
(Capozziello et al, 2003)

Rµν − 1

2
gµν

f

h
=

(

h;µν − hλ
;λ

gµν + Tµν

) 1

h
, (2)

where h = df/dR and Tµν is the energy momentum tensor
of the matter field. The case f(R) = R + constant and
h = 1 gives the Einstein field equation with cosmological
constant included in it. For the purpose of galactic studies
we envisage a spherically symmetric static dust or perfect
fluid with a standard Schwarzschild-like metric

ds2 = −B(r)dt2 + A(r)dr2 + r2
(

dθ2 + sin2 θdϕ2
)

. (3)

From Eqs (2) and (3) one obtains
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where ρ(r) and p(r) are the rest frame mass density and

presume of the matter, respectively. Equation (4) is the
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combination Rtt/B + Rrr/A, Eq (5) is Rtt/B − Rθθ/r2,
and Eq (6) is the rr-component of the field equation. Fi-
nally, Eq (7) is from the contraction of Eq (2). In principle,
for a given ρ, p, and h (orf) one should be able to solve
the four Eqs (4)-(7) for the four unknowns, A, B, R, and
f (or h) as functions of r. We are interested in those solu-
tions of Eqs (4)-(7) that differ from the classic solutions of
Einstein by small amounts. To arrive at this we assume a
parameterized function h(r, α), such that h(r, α → 0) → 1.
We then solve Eqs (4)-(7) up to first order in α.

3. Exterior solutions

Assume ρ = p = 0. If the combination B′/B + A′/A is a
well behaved differential expression, it should have a solu-
tion of the form A(r)B(r) = g(r). Furthermore g(r) should
differ from 1 only by a small amount, in order to have the
classic GR as a limit. There are a host of possibilities. For
the sake of argument let us assume g(r) = rα ≈ 1+α ln r,
α small. Equation (4) splits into

B′

B
+

A′

A
=

α

r
, AB = rα, (8)

h′′ − 1

2

α

r
h′ +

α

r2
h = 0. (9)

Equation (9) has the solution h = rβ , β = α+O
(

α2
)

and

1 − 1
2α + O

(

α2
)

. Of these, the solution h ≈ rα satisfies
the requirement h → 1 as α → 0. The second solution is
discarded. Substituting AB = h = rα in Eq (5) gives.

1

A
=

1

(1 − α)

[

1 −
(s

r

)(1−α/2)

+ λ
(r

s

)2(1−α/2)
]

, (10)

B =
(r

s

)α 1

A
, (11)

where s and λ are constants of integration. For α = 0,
Eqs (10) and (11) are recognized as the Schwarzschild
- deSitter metric. Therefore, s is identified with the
Schwarzschild radius of a central body, 2GM/c2 and λ
with a dimensionless cosmological constant. Also we have
made B dimensionless by inserting s in Eq (11). This is
always possible by re scaling the time coordinate in Eq (3)
by any arbitrary constant factor. Substitution of Eqs (10)
and (11) in Eqs (6) and (7) gives
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The Ricci scalar of the Schwarzschild space is zero. That of
the de Sitter or the Schwarzschild - deSitter space is con-
stant. For non zero α, however, R is somewhere between
these two extremes. At small distances it increases as
(s/r)−2 and at large r’s it behaves as (s/r)α ≈ 1−α ln r/s.

Cosmologists may find this variable Ricci scalar of rele-
vance to their purpose ( see also Brevik et al, 2004, for
a different modification of Schwarzschild - deSitter met-
ric). Another point; we began with f as a function of R
rather than r. Elimination of r between Eqs (12) and (13)
provides one in terms of the other. Thus,

R = (3α)−α/2[f + 6λ][f − 3(2 + 3α)λ]α/2. (14)

In the limit α → 0, one recovers the classical value, f =
R − 6λ. For λ = 0, Eq (15 is easily invertible

f = (3α)α/2R(1−α/2) ≈ R[1 − α

2
lnR +

α

2
ln(3α)]. (15)

Once more we observe the mild logarithmic correction to
the classic GR.

4. Orbits in the spacetime of Eqs (10)-(13)

We assume a test star orbiting a central body specified by
its Schwarzschild radius, 2GM/c2. We choose the orbit in
the plane θ = π/2. The geodesic equations for r, ϕ and t
are
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respectively. Equations (17) and (18) immediately inte-
grate into

r2dϕ/dτ = J, constant, (19)

dt/dτ = 1/B. (20)

Substituting the latter in Eq (16) and assuming a circular
orbit, dr/dτ = 0, gives
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where we have used Eq (11) to eliminate A. In galactic en-
vironment what one measures as the circular orbital speed
is

v =
rdϕ√
Bdt

=
r√
B

dϕ

dτ

dτ

dt
=

√
BJ

r
. (22)

Eliminating J between Eqs (22) and (21) gives
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1

2
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)α rB′
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Further substitution for B from Eqs (11) and (10) yields
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To put Eq (24) in a tractable form:

– We neglect the λ term and substitute s = 2GM/c2.
– We adopt the approximation x−α = exp(−α lnx) =

1 − α lnx + O
(

α2
)

.
– The terms containing s are much small. We retain only

the first order terms in the reduction of Eq (24).
– v is measured in units of c. We restor it hereafter.

With these provisions Eq (24) reduces to

v2 =
1

2
αc2 +

GM

r

[

1 +
1

2
α

{

1 + ln

(

2GM

c2r

)}]

. (25)

A plot of v2 as a function of r has the horizontal asymp-
tote 1

2αc2. This asymptote, however, cannot be a universal
constant. For it will beat the intuition to imagine that a
galaxy and a speck of dust dictate the same speed on far-
away passerby objects. The parameter α should depend
on the mass of the gravitating body residing at the origin.
For any localized matter seen from far enough distances
will betray no characteristics other than its mass. To find
this mass dependence we resort to observations.

From Sanders and Verheijn (1998) and Sanders and
Mc Gaugh (2002) we have compiled a list of forty spi-
rals for which total masses, asymptotic orbital speeds,
and velocity curves are reported. The figures in their pa-
pers contain the observed circular speeds and the new-
tonian ones derived from the observed mass of the stel-
lar and HI components of the galaxies. We have selected
those objects from Sanders et al. which a) have a no-
ticeable horizontal asymptote and b) have fairly reduced
newtonian speeds by the time the flat asymptote is ap-
proached. With the rough assumption that the mass of
the spirals are distributed spherically symmetrically, we
have calculated α = 2v2

∞/c2 and α(M/M⊙)−1/2. These
are reported in columns 5 and 6 of Table 1. Figure 1
is a histogram of the data for α(M/M⊙)−1/2. On the
left hand side, NGC6446 and NGC6946 have anomalously
large HI masses and correspondingly low α(M/M⊙)−1/2

values 2.30 and 2.45, respectively. On the right hand
side, NGC3953, NGC3893, NGC4085, and NGC3972 have
no (reasonably) declining newtonian velocity curves and
have, anomalously large α(M/M⊙)−1/2 values of 3.87,
3.60, 3.74, and 3.77, respectively. Discarding these excep-
tional cases we find a narrowly peaked maximum centered
at (3.05 ± 0.19) × 10−12(M/M⊙)1/2. The main sources of
uncertainty in this value are a) the estimates of the to-
tal masses of the galaxies, b) the judgment whether what
one measures as the asymptotic speed is indeed the or-
bital speed at the far outskirts of the galaxy and c) our
heuristic assumption that the galaxies can be treated as
spherically symmetric objects. Considering these sources

of errors, the emergence of the narrow peak in the his-
togram with low dispersion of 0.19 × 10−12 is significant
and is an indication of the fact that the dependence of the
asymptotic speed on M1/4 is robust. We dare conjecture
that this mass dependence is exact. The proportionality
constant may, however, be revised upon the availability
of more accurate information. We will come back to this
issue shortly.

Let us recapitulate the findings so far.

- We have demonstrated that a modified f(R) = R(1−α/2)

gravity can produce a flat rotation curve at faraway
distances from a gravitating body. And

- The fourth power of the asymptotic speed is propor-
tional to the mass of the central object. The latter
is, of course, observation-based and is adopted as an
empirical rule. The Tully-Fisher relation, the propor-
tionality of v4 and M , emerges as a consequence of
these two features.

5. Kinship with MOND

The features just narrated are also shared by MOND the-
ory. Below we show that some version of MOND can actu-
ally be derived from the present formalism. We recall that
in the weak field approximation, newtonian dynamics is
derived from the einsteinian one by writing the metric
coefficient B =

(

1 + 2φ/c2
)

, φ = GM
r and expanding all

relevant quantities and equations up to first order in φ/c2.
In a similar way one may find a modified newtonian dy-
namics from the present modified GR by expanding B(r)
of Eq (11) up the first order in α and s/r. Thus

B(r) = 1 + α + α ln(r/s) − s/r = 1 + 2φ(r)/c2, (26)

where the second equality defines φ(r). Let us write
α = α0(GM/GM⊙)1/2 and find the gravitational acceler-
ation

g = |dφ/dr| = (a0gn)1/2 + gn (27)

= gn for gn ≫ a0

= (a0gn)1/2 for a0 ≫ gn → 0,

where we have denoted

a0 = α2
0c

4/4GM⊙ and gn = GM/r2. (28)

The limiting behaviors of g are the same as those
of MOND. One may then comfortably identify a0 as
MOND’s characteristic acceleration and calculate α0 anew
from Eq (28). For a0 = 1.2 × 10−8cm/sec

2
, one finds

α = 2.8 × 10−12 (M/M⊙)
1/2

. (29)

It is gratifying how close this value of α is to the one
obtained from the histogram and how similar MOND and
the present formalism are, in spite of their totally different
and independent starting points.
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6. Anomalous acceleration of Pioneers 10 and 11

By Eq (27) a spaceship in a solar bound orbit should ex-

perience an excess acceleration
(

a0GM⊙/r2
)1/2

towards
the sun. This comes from the logarithmic term of Eq (26)
and its numerical values are

aex(20au) = 4.2 × 10−6cm/sec
2

aex(70au) = 1.2 × 10−6cm/sec
2

Pioneers 10 and 11 are reported (Anderson et al, 1998,
and 2002) to have experienced an anomalous acceleration
of 8.74×10−8cm/sec2 directed towards the sun and unac-
counted for with the known dynamics of the solar system.
It is also claimed that the anomaly is the same for both
Pioneers and remains almost constant over the distances
of 20-67 au develed by the spacecraft. The excess acceler-
ation of 1.2−4.2×10−6 cm/sec2 is larger than the Pioneer
anomaly by factors of 15-50. Its r−1 distance dependence
is not in accord with the constancy of the latter either.
However, keeping in mind the multitude and complexities
of the factors involved in the determination of the orbits
of spaceships, it is worth considering the possibility of an
explanation in term of the formalism developed in this
paper.

7. Concluding remarks

We have developed an f(R) = R1−α/2 gravitation which is
essentially a logarithmic modification of Einstein Hilbert
action. In spherically symmetric static situations the the-
ory admits of a modified Schwarzschild - deSitter metric.
The latter in the limit of weak fields gives a logarithmic
correction to the newtonian potential. From the observed
asymptotic speeds of galaxies we learn that the correction
is proportional to the square root of the mass of the cen-
tral body. Flat rotation curves, the Tully-Fisher relation
and a version of MOND emerge as natural consequences
of the theory.

There are two practices to obtain the field equations of
f(R) gravity, the metric approach, where gµν alone is con-
sidered as dynamical variables and the Palatini approach,
where the metric together with the affine connections are
treated as such. Unless f(R) is linear in R, the resulting
field equations are not identical. The metric approach is
often shied away from, for its leading to fourth order dif-
ferential equations. It is also believed to have instabilities
in the weak field approximations (see e. g., Sotiriou, 2005
and also Amarzguioui et al, 2005). In the present paper we
do not initially specify f(R). Instead, at some intermedi-
ate stage in the analysis we adopt an ansatz for df(R)/dR
as a function of r and work forth to obtain the metric, R,
and eventually f(R). This enables us to avoid the fourth
order equations. The trick should work in other contexts,
cosmological, say.

The theory presented here is preliminary and further
investigations are required in order to provide a more

complete analysis; for instance, the matching of the
modified exterior Schwarzschild - deSitter solution to
proper interior solutions as well as the cosmological
aspects of this theory need to be studied.

Acknowledgement: The author wishes to thank Profes-
sor B. Mashhoun for comments and helpful suggestions.
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Fig. 1. A histogram of α(M/M⊙)−1/2. Two cases on the left
hand side and four on the right hand have exceptional velocity
curves. With or without these six cases the mean value is 3.05.
The dispersion 0.19, however, is calculated without them.

Mtot = α =

galaxy r M∗+HI v∞ 2
v2

∞

c2

α
√

M

M⊙

(kpc) 1010M⊙ (km
sec ) (10−7) (10−12)

NGC5533 72.0 22.0 250 13.9 2.96
NGC3992 30.0 16.22 242 13.0 3.23
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NGC5371 40.0 12.5 208 9.61 2.71
NGC3893 17.5 4.76 188 7.85 3.61
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NGC4217 14.5 4.50 178 7.04 3.32
NGC4013 27.0 4.84 177 6.96 3.16
NGC4088 18.8 4.09 173 6.65 3.29
NGC3877 10.5 3.49 167 6.20 3.32
NGC4100 19.8 4.62 164 5.98 2.78
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NGC6946 30.0 5.4 160 5.69 2.45
NGC4051 10.6 3.29 159 5.62 3.10
NGC4138 13.0 3.01 147 4.82 2.77
NGC3917 13.0 1.58 135 4.05 3.22
NGC4085 5.4 1.13 134 3.99 3.75
NGC2403 19.0 1.57 134 3.99 3.18
NGC3972 7.6 1.12 134 3.99 3.77
UGC128 40.0 1.48 131 3.81 3.13
NGC4010 9.0 1.13 128 3.64 3.42
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NGC6503 21.8 1.07 121 3.25 3.14
NGC4183 18.0 0.93 112 2.79 2.98
UGC6917 9.0 0.74 110 2.69 3.13
UGC6930 14.5 0.73 110 2.69 3.15
M33 9.0 0.61 107 2.54 3.30
UGC6983 13.8 0.86 107 2.54 2.74
NGC7793 6.8 0.51 100 2.22 3.11
NGC300 12.4 0.35 90 1.80 3.05
NGC5585 12.0 0.37 90 1.80 2.97
NGC6399 6.8 0.28 88 1.72 3.1
NGC55 10.0 0.23 86 1.64 3.42
NGC6667 6.8 0.33 86 1.64 2.86
NGC6446 14.2 0.42 82 1.49 2.3
UGC6923 4.5 0.24 81 1.46 2.98
NGC7039 8.0 0.21 79 1.39 3.03
UGC6818 6.0 0.14 73 1.18 3.16
IC2573 8.0 0.077 66 0.97 3.49
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NGC6446 14.2 0.42 82 1.49 2.3
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UGC6818 6.0 0.14 73 1.18 3.16
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