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I. INTRODUCTION

In two recent works [1] and [2], in order to explain the
flat rotation curves of spiral galaxies, we approximated a
galaxy by a point source and introduced an asymptoti-
cally logarithmic spacetime metric . The formalism was
equivalent to assigning a ”dark perfect gas companion”
to the point mass with a size proportional to the square
root of the point mass, and a density distribution fad-
ing away as r−2. The conclusions, though sufficient for
many practical purposes, were not generalizable to ex-
tended and many-body systems. For, a)The size of the
dark companion was not proportional to the baryonic
mass and b) the companion of a localized baryonic mass
was not itself localized.

The way out of the dilemma that we have thought of,
is to consider an extended system as a superposition of
its mass multipole moments and see if one can assign a
dark companion to each multipoles, separately.

II. MODEL AND FORMALISM

We consider the galaxy and its hypothetical dark mat-
ter companion to be an extended continuous and axially
symmetric system. We also foresee it to be in a steady
state of, generally differential, rotation. Because of the
axial symmetry, the spacetime around the galaxy will
also be axially symmetric. Because of the steady rota-
tion the spacetime metric will further be static and Kerr-
like. Thus, in a (t, r, ϑ, ϕ) coordinates, the latter three
of which are the conventional spherical coordinates, we
write

ds2 = −Bdt2 + Adr2 + Cdϑ2 + Ddϕ2 + 2Edtdϕ, (1)

where A, B, C, D, & E are functions of r & ϑ only. It will
further be assumed that the rotation is non relativistic
and the gravitational potential is weak everywhere. This
enables one to write

A = 1 + α(r, ϑ), B = 1 + β(r, ϑ),
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C = r2[1 + γ(r, ϑ)], D = r2 sin2 ϑ[1 + δ(r, ϑ)],

E =
sin2 ϑ

r
η(r, ϑ), (2)

where α, β, γ, δ, & η are dimensionless and of first or-
der of smallness. In selecting E, we have been guided by
Kerr’s metric for which η is constant. To the first order
in the small parameters, the covariant and contravariant
metric tensors, the affine connections, and the Ricci ten-
sors are calculated. They are partially tabulated in the
appendix and partially displayed in the field equations
below.

As to the baryonic content of the system we will decom-
pose it into its mass multipoles, monopole, quadupole,
etc. For its dark content we will assume a perfect gas
model of density ρ(r, ϑ), pressure p(r, ϑ) << ρ, and the
4-velocity U t = dt/dτ (of order 1), Uϕ = dϕ/dτ (<< 1),
and Ur = Uϑ = 0. The relevant energy momentum ten-
sors of the dark matter will be

Tµν = pgµν + (ρ + p)UµUν , Tλ
λ = (3p + ρ). (3)

Below, Tµν appears on the right hand side of the field
equations. In order to observe the Bianchi identities one
should further have

Tµν
;ν = 0.

This in turn leads to an equation of hydrodynamic equi-
librium for the dark gas. The baryonic system is ex-
pected to have finite extensions and we will stay outside
its boundaries. The dark companion, however, may ex-
tend to farther distances and not vanish in regions of
interest to us.

The constrain UλUλ = −1, to the first order of small-
ness, gives

Ut = −
(

1 +
β

2

)
, Uϕ a first order small. (4)

The field equation are

Rµν =
(

Tνµ − 1
2
gνµTλ

λ

)
, (5)

where we have assumed 8πG = c2 = 1. From the ma-
terial collected in the appendix and Eqs. (3) & (4) we
calculate the left and right hand sides of Eq. (5) and
obtain

Rtt

1 + β
=−1

2
β,rr − 1

r
β,r − 1

2r2
(β,ϑϑ + cot ϑβ,ϑ)



2

=−1
2
∇2β = −1

2
(3p + ρ) ≈ −1

2
ρ, (6)

Rrr

1 + α
=+

1
2

(β,rr + γ,rr +δ,rr ) +
1
r

(−α,r +γ,r +δ,r )

+
1

2r2
(α,ϑϑ +cot ϑα,ϑ ) =

1
2
(p− ρ) ≈ −1

2
ρ,(7)

Rϑϑ

r2(1 + γ)
=

1
2
γ,rr +

1
2r

(−α,r + β,r + 3γ,r + δ,r) +
1
r2

(−β + γ)

+
1

2r2
[α,ϑϑ + β,ϑϑ + δϑϑ + cot ϑ (−γ,ϑ + 2δ,ϑ)]

=
1
2
(p− ρ) ≈= −1

2
ρ, (8)

1
r2

[
Rϑϑ

1 + γ
− Rϕϕ

sin2 ϑ(1 + γ)

]
=

1
2

(γ,rr − δ,rr) +
1
r

(γ,r − δ,r)

+
1

2r2
[(α,ϑϑ + cot ϑα,ϑ) + (β,ϑϑ + cot ϑβ,ϑ)] = 0(9)

Rrϑ=
1
2

(β,rϑ + δ,rϑ)

+
1
4

cot ϑ (δ,r − γ,r)− 1
4r

(α,ϑ + β,ϑ) = 0, (10)

Rtϕ=
sin2 ϑ

2r

[
η,rr − 2

r
+

1
2

(η,ϑϑ + 3 cot ϑη,ϑ)
]

=
1
2

sin2 ϑ

r
η(p− ρ) + (p + ρ)Uϕ

≈ρ

[
− sin2 ϑ

2r
η + Uϕ

]
. (11)

III. SPHERICALLY SYMMETRIC SOLUTIONS

These solutions are reported in details in [2]. They are
reviewed for later references here. Equations (9) and (10)
are satisfied by γ = δ = 0, and α(r) & β(r) function of r
only. Upon substitution in Eqs. (6-8), we find

β′′ +
2
r
β′ = ρ, β′′ − 2

r
α′ = −ρ,

1
r
(β′ − α′)− 2

r2
α = −ρ, (12)

where we have denoted dβ/dr by β′ for brevity. The three
Eqs. (12) are linear in α, β, & ρ, and are not linearly
independent. Their solution is

β′ =
α

r
and ρ =

1
r

(
α′ +

α

r

)
. (13)

In [2], it was argued that if α(r) is a differentiable func-
tion and has a series expansion of the form

α = λ +
s1

r
+

∑
n=2

sn

nrn
, s′ns constants, (14)

then

β = λ ln r − s1

r
−

∑
n=2

sn

rn
, (15)

ρ =
λ

r2
−

∑
n=2

(n− 1)
n

sn

rn
. (16)

A test object in this spacetime will have an asymptotic
circular speed about the origin v2

∞ = λc2/2, where we
have restored c2 for clarity. In order to satisfy the Tully-
Fisher relation we found

λ = λ0

(
M

M¯

)1/2

, M mass monopole moment,

λ0 ≈ 2.8× 10−12, universal constant. (17)

The dimensionless λ0 was found from the inspection of
the observed asymptotes of the spirals or, equivalently,
from the ‘universal acceleration’ of Milgrom, a0 ≈ 1.2 ×
10−8 cm/sec2. It is clear that the λ-term in Eqs. (14-
16) is non classical. For no one expects the mass density
of a galaxy to extend to infinity as r−2, and its force
field to have a range r−1. At best, it could be attributed
to a hypothetical dark matter accompanying the mass
monopole moment of the system.

The s1-term in Eqs. (14) and (15) is what one finds in
Schwarzschild’s metric or in Newtonian gravitation. s1

should be identified with Schwarzschild’s radius of the
galaxy, 2GM/c2. For the remaining sn-terms, n ≥ 2, we
know of no supporting observational evidence. As a con-
jecture, however, if one assumes sn = λn (M/M¯)n and
λn’s dimensionless universal constants, then the dynam-
ical acceleration of a test object can be written as

adyn =
∑
n=0

λn

(
g

N

a0

)n+1/2

, g
N

= GM/r2 (18)

This conclusion is in accord with Milgrom’s idea that the
dynamical acceleration is not simply proportional to gN ,
but, in the language of this paper, is an involved function
of (gN /a0), see [2] for details.

IV. AXIALLY SYMMETRIC SOLUTIONS

In spite of their complicated appearance, Eqs. (6)-(10)
have simple analytical solutions. Equation (9) is satis-
fied by β(r, ϑ) = −α(r, ϑ), and γ(r, ϑ) = δ(r, ϑ)+const.
Equation (10) is satisfied if we further let β(r, ϑ) =
−δ(r, ϑ)+const. Now substituting

β(r, ϑ) = −α(r, ϑ) = −γ(r, ϑ) = −δ(r, ϑ) + const. (19)

in Eqs. (6), (7), and (8) reduces all of them to

∇2β(r, ϑ) = ρ(r, ϑ). (20)

Instead of integrating Eq. (20) for a given ρ, we will
do the opposite, calculate ρ in term of a preassigned
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β. To choose the latter, we recall that in the weak
field regime, β is essentially the gravitational poten-
tial. Here, it has contributions from the baryonic matter
and its dark companion. The potential of the baryonic
monopole moment is −GM/r. For its dark twin we found
the term 1

2λ ln r (this was dictated by the flat rotation
curves of spirals). The leading terms in the force field
of Eq. (15) were GM/r2 + 1

2λ/r. The dark force faded
out at infinity slower than the baryonic one by a factor
r. Let us generalize this behavior to higher multipoles.
The lth baryonic moment has the gravitational poten-
tial Q

(b)
l Pl(cos ϑ)/r(l+1). Let us conjecture that there is

a corresponding dark potential, a factor r slower than
its baryonic counterpart, of the form Q

(d)
l Pl(cos ϑ)/rl.

Therefore, we propose the following expression for β(r, ϑ)

β(r, ϑ)=−s1

r
− 2

∑

l=2

Q
(b)
l

rl+1
Pl(cos ϑ)

+λ ln r −
∑

l=2

Q
(d)
l

rl
Pl(cos ϑ), (21)

where the the terms in the first line are the gravitational
potentials of the monopole and higher multipoles of the
baryons. They satisfy Laplace’s equation , for, we confine
the analysis to distances beyond the visible boundaries
of the galaxy. The terms, in the second line are due to
the dark matter.

From Eq. (20), the corresponding density is

ρ(r) = ∇2β =
λ

r2
− 2

∑

l=2

lQ
(d)
l

Pl(cos ϑ)
rl+2

. (22)

What are Q
(d)
l ’s? The Tully-Fisher relation helped to

establish a relation between the monopole moment of
baryons and its dark companion, Eq. (17). We are not
aware of a similar observational evidence to write Q

(d)
l

in terms of Q
(d)
l . It is logical, however, to expect Q

(d)
l

to depend on Q
(b)
l and should vanish as the latter van-

ishes. As to what the form of this dependence and its
magnitude should be, has to await either the availability
of further detailed observations, or a postulating hunch
similar to that of Milgrom on the mutual dependence of
dynamical accelerations and gravitational forces.

APPENDIX A

The material collected in this section is self explana-
tory. The coordinate system is (t, r, ϑ, ϕ), the latter
three are the standard spherical polar coordinates. The
assumption of axial symmetry and of steady motion of
the material system makes all functions dependent on
r & ϑ only. From Eqs. (1) and (2), the non vanishing
elements of the metric tensor are

gtt = −(1 + β), grr = 1 + α,
gϑϑ = r2(1 + γ), gϕϕ = r2 sin2 ϑ(1 + δ),
gtϕ = gϕt = r−1 sin2 ϑη, α, β, γ, η << 1. (A1)

The corresponding contravariant metric tensor, to the
first order of smallness in α, β, γ, δ, & η, is

gtt = −(1− β), grr = 1− α,
gϑϑ = r−2(1− γ), gϕϕ = r−2 sin−2 ϑ(1− δ),
gtϕ = gϕt = r−3η. (A2)

In what follows a derivative ∂f(x)/∂xσ is denoted as f,σ.
From

Γλ
µν =

1
2
gλσ [gµσ,ν + gνσ,µ − gµν,σ] ,

the non vanishing elements of the affine connections are

Γt
tr =

1
2
β,r Γt

tϑ =
1
2
β,ϑ

Γt
ϕr =

sin2 ϑ

2r

(
3η

r
− η,r

)
Γr

ϕϑ = − sin2 ϑ

2r
η,ϑ

————- (A3)

Γr
tt =

1
2
β,r Γr

tϕ =
sin2 ϑ

2r

(η

r
− η,r

)

Γr
rr =

1
2
α,r Γr

rϑ =
1
2
α,ϑ

Γr
ϑϑ = −r

(
1− α + γ − 1

2
rγ,r

)

Γr
ϕϕ = −r sin2 ϑ

(
1− α + δ +

1
2
rδ,r

)

————- (A4)

Γϑ
tt =

1
2r2

β,ϑ Γϑ
tϕ = − sin2 ϑ

r3

(
cot ϑη +

1
2
η,ϑ

)

Γϑ
rϑ =

1
2

(
1 +

1
2
rγ,r

)
Γϑ

ϑϑ =
1
2
γ,ϑ

Γϑ
ϕϕ = −(1− γ + δ) sin ϑ cos ϑ− 1

2
sin2 ϑδ,ϑ

————- (A5)

Γϕ
tr = − 1

2r4
(η − rη,r) Γϕ

tϑ =
1
r3

(
cot ϑη +

1
2
η,ϑ

)

Γϕ
rϕ =

1
r

(
1 +

1
2
rδ,r

)
Γϕ

ϑϕ = cot ϑ +
1
2
δ,ϑ

————- (A6)

The following sums are frequently encountered in the
calculations of the Ricci tensor

Γλ
rλ =

2
r

+
1
2

(α,r + β,r + γ,r + δ,r)

Γλ
ϑλ = cot ϑ +

1
2

(α,ϑ + β,ϑ + γ,ϑ + δ,ϑ) (A7)

The non vanishing elements of the Ricci tensor,

Rµν = Γλ
µλ,ν − Γλ

µν,λ + Γη
µλΓλ

νη − Γη
µνΓλ

µλ,

are Rtt, Rrr, Rϑϑ, Rϕϕ, Rrϑ, and Rt,ϕ. They can be
found in Eqs. (6)-(11).
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