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We argue that the classical energy-momentum tensor in Einstein’s field equation, re-
gardless of how it is conceived, implicitly assumes the existence of point particles with

exact positions and momenta, an assumption that contradicts Heisenberg’s uncertainty

principle. To resolve this inconsistency, we propose replacing each constituent of the
classical energy-momentum tensor with a quantum mechanical counterpart: a collection

of Klein-Gordon (KG) fields or their Yukawa-ameliorated versions (YKG). Unlike point

particles, waves are inherently distributed entities, and thus, do not lead to spacetime
singularities. Moreover, KG and YKG waves propagate to infinity, generating not only

the familiar Newtonian r−2 force but also a non-Newtonian r−1 force. The latter can ac-

count for the flat rotation curves of spiral galaxies (in line with the Tully-Fisher relation)
and may be interpreted as a dark matter scenario or an alternative gravity.

1. Introduction

In Newtonian gravitation, GM/r, or in Coulomb’s law, Q/r, one implicitly as-

sumes there are physical entities of finite mass or charge packed in zero volumes.

One further assumes that, in odds with Heisenberg’s principle of uncertainty, these

point-likes can have precise coordinates and momenta. The point particle singu-

larity is a common feature of all non-quantum physics, ranging from mechanics,

electromagnetism, special and general relativity, to the physics of continuous media

in its broadest sense. As long as the phase-space volume available to a dynamical

system is spacious, classical approximations are adequate. Quantum deviations,

however, develop when a system is forced to evolve in tighter phase space volumes.

One example from astronomical realms is the case of neutron stars, an aggregate

of neutrons compressed into exceedingly small volumes and cooled to about Fermi

temperatures.

This paper is the abridged and modified version of.1 It builds upon our ongoing

effort to address limitations of the point-particle concept. Here we argue that

the energy-momentum tensor in GR is that of a collection of point particles. We

suggest to replace each of those gravitating particles by a quantum mechanical

equivalent, a Klien-Gordon (KG) or the Yukawa-ameliorated version of it, YKG
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field. Quantum fields are distributed entities. They do not end up in spacetime

singularities. Quantum fields are waves and can reach infinity. We show that their

cumulative quantum relic creates r−1 gravity forces. The latter can in turn explain

flat rotation curves of spiral galaxies and be interpreted as an alternative gravity, a

dark matter paradigm or other.

Resorting to auxiliary fields in GR, for different needs and purposes, has a

long history and rich literature.2, 3, 4, 5, 6, 7, 8, 9, 10 What differentiates this paper

from the ones cited here or not is our focus on the fact that particles shaping

spacetime structure are not point-like but extended wave packets. We find that due

recognition of this wave nature of individual gravitating particles not only removes

the essential and coordinate singularities at individual spacetime points, but alters

the spacetime structure at galactic distances. Evidently the cumulative quantum

waves of a coherent and/or random collection of gravitating particles do not cancel

out each other. At far outreaches of a galaxy, say, they create r−1 force and cause

flat rotation curves. We will come back to this issue in sections 3 and 4.

2. Definition of the problem

A pair of neutrons coupled together through their isospin behave like an electrically

neutral boson, a good approximation for Neutron stars. Neutrons aside, one knows

that 99% of the matter in Universe is hydrogen and helium, either in interstellar and

intergalactic spaces or as an electrically neural plasma in stars. With some condone

we contend to mimic the gravitating matter of a galaxies, say, as the collection

of N spin 0 bosons each (for the time being) represented by a KG field. For the

Lagrangian density and the Euler-Lagrange equation of the model we write,

L = N

(
ℏ2

m
gµν∂µψ

∗∂νψ +mc2ψ∗ψ

)
(1)

1√
−g

∂µ
(√

−g∂µψ
)
+
m2c2

ℏ2
ψ = 0, for each boson, (2)

where m is the mass of each constituent, of the order of one or two nucleon mass.

And N is the number of nuclei in the gravitating matter, of the order ≈ 1069 for

a Milky way type galaxy. The corresponding energy-momentum tensor of each

constituent is,

Tµν = − 2√
−g

∂

∂gµν
(√

−gL
)

= −ℏ2

m
∂µψ

∗∂νψ +
1

2
gµν

[
ℏ2

m
∂αψ∗∂αψ −mc2ψ∗ψ

]
. (3)

Einstein’s field equation may now be written as,

Rµν =
8πG

c4
N

[
Tµν − 1

2
gµνT

]
=

4πGNm

c2

[
gµνψ

∗ψ − 2
ℏ2

m2c2
∂µψ

∗∂νψ

]
. (4)
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For an exponential time dependence exp(−iωt), the two terms ψ∗ψ, ∂µψ
∗∂νψ in

(4) are time-independent. One may devise a static and spherically symmetric

Schwarzschild-like metric,

ds2 = −B(r)c2dt2 +A(r)dr2 + r2dΩ2, signature:(−,+,+,+). (5)

Reduction of (2) with (5) gives,

d2ψ

dr2
+

(
2

r
− 1

2A

dA

dr
+

1

2B

dB

dr

)
dψ

dr
+
m2c2

ℏ2

(
1 +

1

B

ℏ2ω2

m2c4

)
ψ = 0. (6)

From the following combination of the components of (4) one finds

Rtt

2B
+
Rrr

2A
+
Rθθ

r2
=

1

r2

(
d

dr

( r
A

)
− 1

)
= −2πNrs

C

((
1− 1

B

ℏ2ω2

m2c4

)
ψ∗ψ − 1

A

ℏ2

m2c2
dψ∗

dr

dψ

dr

)
, (7)

Rθθ

r2
=

1

r2

( 1

A
− 1

)
+

1

2rA

d

dr
ln
(B
A

)
=

2πNrs
C

ψ∗ψ. rs := 2Gm/c2, (8)

where C is a constant to be discussed later. In (6) and (7), (ℏ2ω2/m2c4) is the

ratio of the square of the oscillation energy to the rest mass energy of the KG

constituent. And ℏ2

m2c2 ≈ 10−31m2 is the square of the Compton wavelength of the

constituent nucleon. Both are extremely small. One may safely ignore them without

compromising the essential role of the wave nature of the KG field. Furthermore,

it is preferable to work with dimensionless radius, x = r/rs, d/dx = rsd/dr, rs =

2Gm/c2. On applying these simplifications to (6), (7) and (8) one arrives at.

ψ′′ +

(
2

x
− 1

2

A′

A
+

1

2

B′

B

)
ψ′ + k2ψ = 0, k = rs

mc

ℏ
≪ 1, (9)

1

x2

(
d

dx

( x
A

)
− 1

)
= −2πN

C
ψ∗ψ, (10)

1

x2

(
1

A
− 1

)
+

1

2xA

d

dx
ln

(
B

A

)
=

2πN

C
ψ∗ψ, (11)

The coupled and non-linear equations (9) - (11) can be solved by iteration. As

an initial guess we adopt B = A−1 = (1− x−1), substitute them into (9) and solve

it for ψ, substitute the result into (10) and solve it for A, and finally substitute the

results into (11) and solve it for B.

I. For near origin, (x → 0), we expand all functions as Taylor series in x and

find

ψ(x) = 1− 1

4
k2x2 + · · · , (12)

B(x) =
1

A(x)
= 1 +

2πN

C

(1
3
x2 − 1

10
k2x4 + · · ·

)
, (13)
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Essential singularity is removed. Existence of singular blackholes is ruled out There

could, however, be non-singular ones if a fraction of the gravitating KG bosons be-

come degenerate. Gravitational forces will not be able to crush them into singularity

without violating the uncertainty principle. Moreover, spacetime is asymptotically

flat. A test particle, the nearer to origin, will experience the lesser gravitational

force and the freer it will be. This reminds one of the asymptotic freedom of quarks

confined within nuclei. We will come back to this analogy in section 4, where we

elaborate on the commonalities of gravitational and strong nuclear forces.

II. For x→ 1, we expand all functions as Taylor series in (x− 1). To the order

(x− 1)2 for ψ, and the order (x− 1) for A and B we find

ψ = 1− 1

4
k2(x− 1)2, (14)

B =
1

A
= 1 +

1

3

2πN

C
x2

((
1− 1

2
k2

)
− 3

4
k2

(
x− 1

))
. (15)

Horizon singularity is removed. Both A and B keep their spacelike and timelike

nature before and after x = 1.

III. The far distance solutions are the most interesting. As x → ∞ both

A and B → 1. (9) reduces to the standard Helmholtz equation with analytical

solutions,

ψ′′ +
2

x
ψ′ + k2ψ = 0, ψ =

1

x
e±ikx, not normalizable! (16)

But ψ of (16) is not normalizable. At x→ ∞, it does not fall off steeply enough to

have finite
∫
ψ∗ψ. To circumvent the difficulty we suggest a Yukawa-ameliorated

Klein-Gordon (YKG) field, 1
xe

−(κ±ik)x, where we will shortly see that κ≪ 1. Such

an amelioration is logical and perhaps imperative; for it is inconceivable to imagine

the quantum wave of a single particle to extend to infinity and alter the spacetime

structure at universal scales. With the inclusion of κ, (16) changes accordingly,

ψ′′ +
2

x
ψ′ − (κ± ik)2ψ = 0, (17)

ψ =

√
κ

2π

1

x
e−(κ±ik)x,

∫
ψ∗ψdx3 = 1. (18)

Substitution (18) in (10) and (11) gives.

B = A−1 = 1 +
N

2x
e−2κx = 1 +

Nrs
2r

e−2κr/rs . (19)

Spacetime is essentially flat, except for a small static and exponentially dying out

gravitational ripple Nrs
2r e

−2κr/rs .
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To appreciate the physics behind (19), let us restore the variable r = xrs, and

examine the gravitational force in the weak field approximation,

1

2
c2
dB

dr
= −1

2
Nc2

(
rs
r2

+
2κ

r

)
e−2κr/rs

= −
(
NGm

r2
+
Nc2κ

r

)
e−2κr/rs . (20)

The 1/r2 term is the Newtonian force, albeit modulated by the Yukawa falloff fac-

tor. The 1/r term is non-Newtonian and non-GR. We will shortly see that it is

responsible for the flat rotation curves of spiral galaxies.

2.1. Determination of κ - Tully-Fisher relation (TFr):

Abstracted from a forage of observational data,,11 TFr states:

a. The observed rotation speeds, v2 = rggrav, of distant stars and HI clouds

in spiral galaxies show a much gentler decline than Newton’s GM/r.

b. The observed v2, more often than not, has the flat asymptotic v2 ∝
√
M ,

rather than ∝M in the Newtonian gravitation.

In his Modified Newtonian Gravity (MOND), Milgrom encapsulates12 TFr by noting

that:

geffective = gNew if large,

=
√
gNewa0, if small, a0 = 1.2× 10−10m.sec−2.

Leveraging TFr and MOND, the 1/r term in (20) may now be written as,

Nc2
κ

r
=

√
NGm

r2

(Nc4κ2
Gm

)
=

√
gNew

(Nc4κ2
Gm

)
.

It only suffices to identify
(

Nc4κ2

Gm

)
with Milgrom’s a0 and obtain,

κ =

√
Gm

Nc4
a0 ≈ 4.06× 10−41 1

N1/2
= 4.06× 10−41

(m
M

) 1
2

, (21)

where for m we have used the mass of a nucleon. For a Milky Way type galaxy of

about 1.5× 1012M⊙, one has

κMW ≈ 9.6× 10−76.

Note how small κ is and how gently the factor e−2κx falls off as x→ ∞.
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3. Massive Graviton

Yukawa introduced his field in 1935 to model the residual strong forces that bind

nucleons together. The forces are attractive. There are two masses in Yukawa

paradigm, the masses of u and d quarks as the sources of strong interactions, and

the masses of three mediating pions (π±, π0).

YKG of (17) and (18) is the gravitational analog of Yukawa field albeit in galactic

scales. YKG forces are also attractive. There are also two masses in YKG; the

masses of gravitating YKG waves, m, seen in k = 2Gm2

ch , and masses of the mediating

gravitons associated with κ. One may have already guessed (and we will show

in a forthcoming communication) that the massive YKG gravitons come in three

polarizations in one to one correspondence with the three pions.

The Compton wavelength and mass of YKG massive gravitons are:

λg =
rs
2κ

=
Gm

c2κ
= 3.04× 10−14

(
M

m

)1/2

meter, (22)

mg =
ℏ
cλg

= 1.16× 10−29
(m
M

)1/2

kg = 6.49× 104
(m
M

)1/2

ev . (23)

It can be easily verified that at r = λg, a) the two r−2 and r−1 forces become

equal, that is the non-newtonian gravitational force becomes dominant at distances

farther than λg. And b) at r = λg the exponential factor e−2κr/rs reduces to e−1.

From Table(1), for the Milky Way we find,

λMW
g ≈ 1.2× 1021m ≈ 38 kpc, mMW

g ≈ 2.8× 10−64 kg ≈ 9.5× 10−29 ev.

In Table (1) we have calculated the mass and the wavelength of gravitons for the

Milky Way, the Sun, the Earth, one kg mass, the nucleons, and the u and d quarks

• In the Milky Way, transition from Newtonian to the non-Newtonian gravi-

tation takes place at 38 kpc, far outside of the visible disc of the galaxy of

radius 26.8 kpc.

• For the Sun (or rather the whole solar system mass) transition takes place

at 7100 AU, somewhere within the Oort clouds. The latter are believed

to have an inner edge of 2000 to 5000 AU and an outer edge of 10000 to

100000 AU, see https://science.nasa.gov/solar-system/oort-cloud/.

• For the Earth transition distance is longer than Jupiter’s orbital radius,

9.54 AU.

• For a one kg weight, λg = 74 cm is small enough to think of a table top

setup to check deviations from Newtonian gravitation.

• The last four lines for p, n, u, d are included as a matter of curiosity. They

should not taken seriously. It is interesting, however, to note that how

the gravitons mediating the gravitational interaction of u and d, and pions

mediating the residual strong interaction of the same particles have almost

the same masses.
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There are further parallelism between our YKG gravitation and the Yukawa field

for the residual strong interactions. In the concluding section, 4, we elaborate on

these parallels and prudently dare suggest that both might be the two extremes of

one and the same physical notion.

Table 1. Compton wavelength and mass of massive gravitons that mediate the
YKG gravitation of a wide range of masses, from celestial bodies to quarks.

Mass (kg) λg(m) mg

MW 1.5× 1042 1.2× 1021 ≈ 38 kpc 9.5× 10−29eV

Sun 2× 1030 1.06× 1015 ≈ 7100 AU 1.7× 10−22 eV

Earth 6× 1024 1.7× 1012 ≈ 11.3 AU 1.06× 10−19eV

1 kg 1 0.74 26× 10−6eV

p & n 1.673× 10−27 30× 10−15 6.4 MeV

d quark 8.54× 10−30 2.2× 10−15 85.8 MeV

u quark 3.56× 10−30 1.4× 10−15 134.6 MeV

4. Conclusion

We argue that the point particle concept in classical physics is singular and con-

tradicts Heisenberg’s uncertainty principle. In GR, the energy-momentum tensor

consists of a collection of point particles. We propose replacing each member of

that collection with a Yukawa-ameliorated Klein-Gordon (YKG) wave.

In an spherically gravitating system, waves being distributed entities, eliminate

essential and horizon singularities from spacetime. However, non-singular black

holes may exist if a fraction of the YKG waves enters a degenerate state.

YKG waves extend to infinity and produce a non-Newtonian r−1 gravitational

force. This feature can explain the flat rotation curves of spiral galaxies, offering a

potential alternative to dark matter scenarios and other gravity theories.

There are a number of interesting parallelism between the YKG gravitation and

the residual strong interactions:

• To begin with, both forces are attractive and exhibit asymptotic freedom.

As two interacting particles move closer to one another, the strength of

both gravitational and strong forces diminishes to zero (see the comment

below equation (13)).

• In the standard GR, gravitation is mediated by massless gravitons, which

have two polarization states. YKG gravitons are massive and (we will

demonstrate in a forthcoming publication that) possess at least three po-

larization.

• These polarization states can be put in one to one correspondence with the

three Yukawa pions that mediate residual strong interactions.

• The mass of YKG gravitons, for the gravitational interaction between nu-

cleons and the d and u quarks, is nearly identical to the mass of π mesons
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(see Table 1).

Given these similarities, is it reasonable to speculate that YKG gravitation and

at least the residual strong interactions are the two extremes of one and the same

underlying principle?
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