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Abstract. Wave propagation in a zero-β magnetic flux tube with a discontinuous Alfvèn speed at its surface is considered. The
problem is reduced to solving a wave equation for the projection of the magnetic perturbation along the axis of the cylinder.
The mathematical formalism is identical with that for the propagation of electromagnetic waves in optical fibers with a varying
index of refraction in the cross section of the fiber. The dispersion relation is solved in its full generality and three wave numbers
are assigned to the normal modes of the cylinder. There is a lower cutoff for the longitudinal wave number along the cylinder
axis and an upper cutoff for the radial wave number. Eigenfrequencies and eigenfields (i.e. the magnetic and velocity fields of
modes) are calculated. Resistive and viscous dissipation rates have mathematically identical forms, differing only in their being
inversely proportional to the Lundquist and Reynolds numbers, respectively. These rates as well as the energy densities are
obtained for each mode and are commented on.
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1. Introduction

Since the discovery of the hot solar corona about sixty years
ago, different theories of coronal heating have been put for-
ward and debated. Recent observations, however, have indi-
cated the existence of magnetohydrodynamic (mhd) waves and
their damping in coronal loops and suggest they may be sources
of heat supply to the corona. In their analysis of observa-
tions by the Transition Region and Coronal Explorer (TRACE),
Nakariakov et al. (1999) reported the detection of spatial os-
cillations in five coronal loops with periods ranging from 258
to 320 s. They interpreted them as global mhd standing waves
driven by solar flares in the adjacent active regions. TRACE
also detected decaying oscillations in a long, (130±6)×106 m,
and thin, (2 ± 0.36) × 106 m, bright coronal loop in the 171 Å
emission lines of FeIX. The decay time was (14.5 ± 2.7) min
for an oscillation of (3.9 ± 0.13) millihertz. All these observa-
tions indicate strong dissipation of the wave energy that may
be the cause of coronal heating.

Resonant absorption of Alfvèn waves in coronal inhomo-
geneities was first suggested by Ionson (1978) as a nonther-
mal mechanism of heating. He pointed out the importance
of the density and magnetic field gradients in dissipating
the wave energy. Ionson’s conclusions received further sup-
port from the more extensive calculations of Hollweg (1984).
Wentzel (1979a,b) was among the early investigators studying
the propagation and dissipation of mhd waves along surfaces of
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discontinuity of Alfvèn speeds. Wilson (1979, 1980) studied
the vibrational modes of flux sheaths and flux tubes embedded
in compressible but unstratified atmospheres and obtained a
general dispersion relation. Roberts (1981a,b) proposed the oc-
currence of magnetoacoustic surface waves along magnetic in-
terfaces. Edwin & Roberts (1983) elaborated on the dispersion
relation for a magnetic cylinder embedded in a magnetic en-
vironment typical of that of the solar photosphere and corona.
Roberts et al. (1984) found two distinct time scales (long acous-
tic and short Alfvèn ones) for the propagation of magnetoa-
coustic waves in coronal inhomogeneities. Steinolfson et al.
(1986) were concerned with the role of viscous and resistive
dissipations on surface waves in cases of both continuous and
discontinuous variations of Alfvèn speeds. Davila (1987) and
Steinolfson & Davila (1993) did much analytic and numer-
ical work on resonant absorption and of their resistive dis-
sipation. Ofman et al. (1994, 1995) included viscous dissi-
pation in their analysis and concluded that the shear viscous
dissipation is of the same magnitude as the resistive heat-
ing. Contribution of the compressional viscosity, however, was
found to be insignificant.

Here we study a cylindrical magnetic flux tube with a dis-
continuous Alfvèn speed across the surface of cylinder. The
model is essentially the same as that of Edwin & Roberts
(1983) but without limiting it to slender tubes. In Sect. 2 we
reduce the problem to solving a wave equation for the com-
ponent of the magnetic field along the cylinder axis and dis-
cuss the relevant boundary conditions. In Sect. 3 we elaborate
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on the dispersion relation, give its graphical and numerical so-
lutions, and introduce cutoffs. In Sect. 4 we discuss resistive
and viscous dissipations. In Sects. 5 and 6 we give further nu-
merical and graphical results. Section 7 is devoted to conclud-
ing remarks. Lengthy formulae are collected in Appendix A.
Purely transverse modes, with no longitudinal components in
magnetic and velocity fields, have certain peculiarities. They
are touched upon in Appendix B.

2. Formulation of the problem

More often than not, magnetohydrodynamic (mhd) waves
propagating in coronal loops have, mathematically, the same
structure as the light signals propagating in optical fibers
and/or dielectric resonators, a point addressed by Nakariakov
& Roberts (1995) and Nakariakov (2000). For example, in a
cylindrical fiber lying in the z-direction with a graded or step-
like index of refraction, the electromagnetic fields E and B can
be expressed in terms of Ez or Bz depending on whether the
mode in question is a transverse magnetic or a transverse elec-
tric one. Similarly, in a low-β magnetic flux tube with graded
or step-like Alfvèn speed, propagation of fast magnetoacous-
tic waves can be reduced to solving a wave equation for the
z-component of the perturbation in the magnetic field. In both
cases the differential equations for z-components of fields are
identical. The boundary conditions, however, differ. See e.g.
Ghatak & Thyagarajan (1998) for light propagation in optical
fibers.

2.1. Equations of motion

The linearized mhd equations for a zero-β plasma are

∂δu

∂t
=

1
4πρ
{(∇ × δB) × B + (∇ × B) × δB} + η

ρ
∇2δu, (1)

∂δB
∂t
= ∇ × (δu × B) +

c2

4πσ
∇2δB, (2)

where δu and δB are the Eulerian perturbations in the velocity
and magnetic fields; ρ, σ, η and c are the mass density, the elec-
trical conductivity, the viscosity and the speed of light, respec-
tively. Under coronal conditions the gas pressure is neglected
in comparison with magnetic pressure (zero-β approximation)
and gravitational effects are omitted on account of the den-
sity scale height being much larger than dimensions of the flux
tube. The viscosity is introduced in its non-tensorial form for
simplicity. We will further assume that the dissipative terms in
Eqs. (1) and (2) are much smaller. We will first solve the prob-
lem without these terms and re-introduce them later as small
corrections in calculating contributions of the different modes
to heating of the corona.

We let the flux tube lie along the z-axis and let ρ = ρ(r⊥)
and B = B(r⊥) ẑ, where r⊥ is the coordinate vector trans-
verse to the magnetic field. That ρ is independent of z follows
from the assumption of an unstratified tube. That B is a conse-
quence of ∇.B = 0. We further assume an exponential z- and t-
dependence, ei(kzz−ωt), for any of the components δu and δB. We
take the following steps: i) Take the time derivative of Eq. (2)

and substitute for ∂δu/∂t from Eq. (1). ii) Decompose the re-
sulting equation into its z- and transverse components. We ar-
rive at[
∇2
⊥ −

(
k2

z − ω2/v2A
)]

(BδBz) − ∇⊥ ln
[
B

(
k2

z − ω2/v2A
)]

· ∇⊥(BδBz) = 0, (3)

BδB⊥ = − ikz(
k2

z − ω2/v2A

)∇⊥(BδBz), (4)

where vA(r⊥) = [B2/4πρ]1/2 is the local Alfvèn speed. The vis-
cous and resistive terms are neglected at this stage. Similarly
decomposing Eq. (1) into its z- and transverse components and
eliminating δB⊥ appearing in them by Eq. (4) gives

ρδvz =
1

4π

kzv
2
A

ω
(
k2

z v
2
A − ω2

)∇⊥ ln B · ∇⊥(BδBz), (5)

ρδu⊥ =
i

4π
ω(

k2
z v

2
A − ω2

)∇⊥(BδBz). (6)

That all field components are expressible in terms of δBz holds
for any geometry of the cross section of the flux tube and any
dependence of B and ρ on r⊥.

Equations (3)–(6) become singular if k2
z v

2
A(r) − ω2 = 0

at some point r. The singularity can, however, be removed
by the introduction of any dissipation mechanism. This is-
sue is addressed in ample detail by Ionson (1978), Davila
(1987), Steinolfson & Davila (1993), Ofman et al. (1994,
1995), Kivelson & Russell (1997), Roberts & Ulmschneider
(1997), and Nakariakov (2000).

Hereafter, we consider a circular cylinder and use cylindri-
cal coordinates (r, φ, z). For simplicity, the radius of the cylin-
der is taken as the unit of length. The length of the cylinder is
assumed to be πL in the same unit. To ensure periodicity in z
direction one must then have kz = l/L, l = 1, 2, . . .We further
assume a constant magnetic field throughout the space and a
step-like mass density, ρi for r < 1 and ρe < ρi for r > 1. The
condition ρe < ρi implies vAe > vAi and it is necessary to have
standing waves in the flux tube. Otherwise any perturbation in
the fields will propagate away to infinity. With these simplifi-
cations, Eq. (3) reduces to
(

d2

dr2
+

1
r

d
dr
+ k2 − m2

r2

)
δBz(r) = 0, k2 = ω2/v2A − k2

z , (7)

where we have introduced a φ-dependence eimφ, m = 0, 1, 2, . . .
Equation (7) is Bessel’s equation. Inside the tube it could have
solutions

δBz = Jm(kir), k2
i = ω

2/v2Ai
− k2

z > 0, r < 1. (8)

To have evanescent waves in the exterior region, r > 1, the
solution should be

δBz = AKm(ker), k2
e = k2

z − ω2/v2Ae
> 0, r > 1, (9)

where Km is a modified Bessel function with vanishing asymp-
totic behavior, e−iker, as r → ∞. The matching constant A is as
yet unspecified.
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2.2. Boundary conditions

i) To avoid shock waves at r = 1, the Lagrangian changes in
pressure should be continuous. Here, on account of the zero-β
approximation and constancy of B throughout space this re-
duces to the continuity of δBz. Thus

Jm(ki) = AKm(ke). (10)

ii) On account of ∇·δB = 0, δBr should be continuous at r = 1.
This, by Eqs. (4), (8) and (9) gives

1

k2
i

dJm(kir)
dr

∣∣∣∣∣∣
r=1

= − A

k2
e

dKm(ker)
dr

∣∣∣∣∣∣
r=1

or
1
ki

dJm(ki)
dki

= − A
ke

dKm(ke)
dke

· (11)

A note on the behavior of δv and δρ on the boundary of the
cylinder is in order. From Eqs. (4) and (6) one finds δv⊥ =
−(ω/kz)(δB⊥/B). Thus, ω, kz, and B being constants, the con-
tinuity of δBr across the cylinder implies the continuity of
δvr. This is the boundary condition used by Edwin & Roberts
(1983). On the other hand the continuity equation written in the
form δρ = −(i/ω)∇.(ρδu), gives δρe − δρi = −(i/ω)(ρe − ρi)δvr
at r = 1. Therefore, δρ will vary discontinuously across the
cylinder.

3. Dispersion relation, classification of modes
and cutoffs

To simplify the notation further, we let x = ki and y = ke. By
Eqs. (8) and (9), x and y are related as follows

y2 = C2
l −
ρe

ρi
x2, (12)

where

C2
l = (1 − ρe/ρi)(l/L)2, l = 1, 2, · · ·,

πL in units of radius, (13)

is a measure of the contrast between interior and exterior of
the flux tube. Division of Eq. (11) by (10) now gives

1
x

J′m(x)
Jm(x)

= −1
y

K′m(y)
Km(y)

, (14)

where “′” on Jm and Km indicates a derivative with respect to
their appropriate arguments. Equation (14) is the dispersion re-
lation. As an equation for x, it can be solved numerically and
graphically. Once this is done, Eq. (10) can be used to find the
matching constant A.

In thin flux tubes, (L� 1), approximating Jm(x) and Km(y)
as (x/2)m and (y/2)−m, m ≥ 1, gives x = y. This in turn leads
to an approximate dispersion relation (ω/kz)2 = v2A,av where the
average Alfvèn speed, the same as the kink speed of Edwin &
Roberts (1983), is obtained from v−2

A,av = (1/2)(v−2
Ai
+ v−2

Ae
). For

m = 0, however, this approach breaks down, because of the
logarithmic behavior of K0(y) at small y. Thin flux tubes are
studied in detail by Ionson (1978), Wentzel (1979a,b), Wilson
(1979, 1980), Edwin & Roberts (1983), Roberts et al. (1984),
Hasan & Sobouti (1987), Nasiri (1992), and Nakariakov et al.
(1999).

3.1. A graphical analysis of dispersion relation

Here we study Eq. (14) in its generality and discuss the depen-
dence of ωs on three wave numbers n,m and l pertaining to the
r, φ and z-directions, respectively. In Fig. 1, the multi-branch
solid curves with vertical asymptotes are the plots of the left
hand side of Eq. (14). They branch out to infinity at zeros
of Jm(x), and intersect the x-axis at zeros of J′m(x). Only the
positive branches are needed and are shown in the figure. The
dotted curves are the plots of the right hand side of Eq. (14).
They are finite at x = 0 and go to infinity at the asymptote
y2 = C2

l − (ρe/ρi)x2
max = 0 or xmax = Cl(ρi/ρe)1/2. Beyond this

asymptote, y becomes imaginary and therefore unphysical.
The intersections of the multi-branch curves with dotted ones
are the solutions of Eq. (14). They are denoted by xnml, where
m = 0, 1, 2, . . ., is the order of the Bessel function, as well as
the azimuthal wave number associated with the φ-coordinate;
n = 1, 2, . . . , nmax, the roots of Eq. (14) and is the wave
number along the r-coordinate. Finally l = 1, 2, 3, . . ., is the
wave number in z-direction and enters through the contrast
parameter C2

l of Eq. (13).

Asymptotic behavior of xnml: let γmn and γ′mn be the nth
root of Jm(x) and J′m(x), respectively. Asymptotically for higher
roots one has γmn ≈ (2n + m − 1/2)π/2 and γ′mn ≈ (2n + m −
3/2)π/2. From Fig. 1 for m ≥ 1, it is clear that γm,n−1 < xnml <
γ′mn. Using the asymptotic form of γs one finds

xnml =
1
2

(
γm,n−1 + γ

′
mn

)
+ αlπ/2 ≈ (2n + m − 2 + αl)π/2, (15)

where −1/2 < αl < 1/2 is to be determined numerically. For
m = 0, n in Eq. (15) should be replaced by n + 1.

3.2. Eigenfrequencies and eigenfunctions

The mode frequencies in terms of xnml can be written from the
definition of Eq. (8):

ω2
nml = ω

2
A

[
x2

nml + (l/L)2
]
, l = 1, 2, · · ·, m = 0, 1, · · ·,

n = 1, 2, · · ·, nmax,

≈ ω2
A

[
(2n + m − 2 + αl)2π2/4 + (l/L)2

]
, m ≥ 1, (16)

where ωA = vAi is the interior Alfvèn frequency. For m = 0,
n in Eq. (16) should be replaced by n + 1. The corresponding
mode function for δBz is

δBz,nml = Jm(xnmlr)ei(lz/L+mφ−ωnmlt), r < 1,

= AnmlKm(ynmlr)ei(lz/L+mφ−ωnmlt), r > 1, (17)

where y2
nml = C2

l − (ρe/ρi)x2
nml, and Anml = Jm(xnml)/Km(ynml);

see Eqs. (8)–(10). The transverse r- and φ-components of δB
and of δu are given in Appendix A, Eqs. (A.1)–(A.4), δvz = 0
in the present model.

A mode given by Eqs. (16), (17) and (A.1)–(A.4) is char-
acterized by a trio of wave numbers (n,m, l) that actually count
the number of nodes or antinodes along r, φ, and z directions,
respectively. This trio provides a suitable basis for the classifi-
cation of modes. What in the literature are termed as sausage,
kink and f luting modes, in the present analysis correspond to
modes with m = 0, 1 and 2 or greater, respectively.
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Fig. 1. The plots of the two sides of Eq. (14), the dispersion relation, as functions of x for m = 0 (sausage modes), m = 1 (kink modes), and
m = 2 (fluting modes) with l = 100, C2

100 = 8.9, radius = 103 km, length = 105 km, and ρe/ρi = 0.1. Left-hand side of dispersion relation, solid
curve; right-hand side of the same equation, dotted curve. Intersections of solid and dotted curves, xnml, are tabulated in Tables 1–3.

3.3. Cutoff wave numbers

It was pointed out above that, for m ≥ 1, xnml, whenever they
exist, fall in the interval γm,n−1 < xnml < γ

′
mn. By definition,

y2
nml = C2

l − (ρe/ρi)x2
nml > C2

l − (ρe/ρi)γ2
m,n−1 ≥ 0. This gives

the lower cutoff, lmin, for the longitudinal wave number

l > lmin ≈ Lγm,n−1/(ρi/ρe − 1)1/2, πL in units of radius. (18)

For m = 0, γ0n should replace γ0,n−1. The existence of a lower
longitudinal cutoff, but only for m = 0, was pointed out by
Edwin & Roberts (1983) and Roberts et al. (1984).

For a given l > lmin there exists an upper cutoff, nmax, for the
radial wave number. This can be obtained by examining γmn′s
and finding out which one is closest but smaller than xmax; see
again Fig. 1. Then

nmax = n′ if m = 0,
= n′ + 1 if m ≥ 1.

(19)

For large values of xmax(≈10), one may give an alternative ex-
pression,

nmax ≈ integer(xmax/π) = integer[(ρi/ρe − 1)1/2l/πL], (20)

for, asymptotically the zeros of Bessel functions are spaced
by π.

4. Dissipative processes

The finite conductivity and viscosity of plasma causes an expo-
nential time decay of disturbances. For weak dissipations one
may assume

δBdissipative = δB(r)e−(iω+α)t ,

δudissipative = δu(r)e−(iω+α)t , (21)

where ω, δB, and δu on the right hand side are the solutions of
Eqs. (16), (17) and (A.1)–(A.4) in the absence of dissipations.
Substituting Eq. (21) in Eqs. (1) and (2), cancelling out the non
dissipative terms, and keeping only the first order terms in α,
c2/4πσ and η gives

−2αδB =
(
c2/4πσ

)
∇2δB

+(η/ρ)
[
∇2δB⊥ + (iẑ/kz)∇.

(
∇2δB⊥

)]
· (22)

Rewriting Eq. (22) for either the transverse or the z-component
of a mode (nml) and substituting for all quantities in terms of
δBz gives

αnml = (ωA/4π)
(
S −1 + R−1

) [
x2

nml + (l/L)2
]
, r < 1, (23)

where the Lundquist number, S =
(

4πσ
c2

) / (
2π
vAi

)
, is the ratio of

the resistive time scale to the Alfvèn crossing time and the
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Reynolds number, R =
(
ρi

η

)
/
(

2π
vAi

)
is the ratio of the viscous

time scale to the Alfvèn crossing time. Equation (23) for α is
appropriate for the inner region of the tube. A similar expres-
sion can be obtained for the outer region. It will be shown in
Figs. 2 to 4, however, that in the outer region all components of
δB and δu are small and highly evanescent. They carry no sig-
nificant amount of energy and can be ignored for all practical
purposes.

The current density generated by δB is δ j = (c/4π)∇× δB.
For a damped field of Eq. (21), this gives an ohmic heating rate
of dδQohmic/dt = 1

2σ

∫
e−2αt | δ j(r) |2 d3x. Similarly the vis-

cous heating rate is dδQvisc/dt = η
2

∫
e−2αt | δu.∇2δu | d3x.

For a mode (nml) the integrands are given in Appendix A,
Eq. (A.5). Both turn out to have identical mathematical form,
leaving the ohmic and the viscous contribution to be propor-
tional to S −1 and R−1, respectively. Correspondingly, the total
dissipation time scale becomes τ−1

tot = (τ−1
ohmic + τ

−1
visc) ∝ α.

The total heat δQ, generated mainly over one or two total
dissipative time scales, is obtained by a further time integration
of d(δQohmic + δQvisc)/dt. This, not surprisingly, turns out to be
equal to the total energy initially vested in the wave in the form
of kinetic and magnetic energies. Thus,

δQ =
∫ (

1
2σ
| δ j(r) |2 +η

2
| δu.∇2δu |

)
d3x

∫ ∞

0
e−2αtdt,

=
1
2

∫ (
1
2
ρ | δu |2 + 1

8π
| δB |2

)
d3x,

=
πL
8

 1

x2
nml

+
1

y2
nml



×
y2

nmlJ
′2
m (xnml) + 2(l/L)2 Jm(xnml)J′m(xnml)

xnml

+

(l/L)2 − m2 −
 1

x2
nml

− 1

y2
nml

 (ml/L)2

 J2
m(xnml)

· (24)

The expression for the energy density of the wave is given in
Eq. (A.6). If the total dissipative time scale, α−1, is short and
the time evolution of heat generation is not of interest, one may
take a short cut to the total generated heat by calculating the ini-
tial energy of the mode. Finally, the exact equality of the dissi-
pated energy to the total initial energy of the wave should serve
as a test of the consistency of the assumptions made throughout
the present analysis and the correctness of the lengthy mathe-
matical manipulations.

5. Numerical results

As typical parameters for a coronal loop, we assume radius =
103 km, length = 105 km, ρe/ρi = 0.1, ρi = 2 × 10−14 gr cm−3,
B = 100 G, σ = 225×106 s−1, and η/ρ = 1.6×106 m2 s−1. For
such a loop one finds vAi = 2000 km s−1, vAe = 6400 km s−1,
ωA = 2 rad s−1, C2

l = 89 × 10−5 l2, S = R = 2 × 104. The
roots xnml and ynml are calculated and displayed in Tables 1, 2
and 3 for m = 0, 1, and 2, respectively. In each table three ra-
dial mode numbers n = 1, 2 and 3, and several longitudinal
wave numbers, l, are considered. Note the positions of cut-
offs in Tables 1–3. For example, in Table 1, for n = 1, 2, 3,

Table 1. Values of xnml and ynml for m = 0 (sausage) modes with
radius = 103 km, length = 105 km, ρi = 2× 10−14 gr cm−3 and ρe/ρi =

0.1. These values give C2
l = 89 × 10−5l2. No mode can exist in the

dashed region of the table.

l xnml ynml

25 – – – – – –
26 2.4191 – – 0.1282 – –
58 2.7718 – – 1.4919 – –
59 2.7793 5.5314 – 1.5250 0.1962 –
91 2.9757 5.7883 – 2.5465 2.0049 –
92 2.9807 5.7937 8.6588 2.5777 2.0436 0.1883

100 3.0190 5.8349 8.7444 2.8264 2.3442 1.1196
n = 1 n = 2 n = 3 n = 1 n = 2 n = 3

Table 2. Same as Table 1, for m = 1 (kink) modes.

l xnml ynml

1 0.0284 – – 0.0284 – –
40 0.7865 – – 1.1671 – –
41 0.7984 3.8369 – 1.1968 0.1545 –
74 1.0827 4.1281 – 2.1809 1.7803 –
75 1.0890 4.1347 7.0237 2.2108 1.8157 0.2701

100 1.2183 4.2783 7.2106 2.9583 2.6589 1.9237
n = 1 n = 2 n = 3 n = 1 n = 2 n = 3

Table 3. Same as Table 1, for m = 2 (fluting) modes.

l xnml ynml

1 0.0284 – – 0.0284 – –
54 1.2383 – – 1.5627 – –
55 1.2541 5.1400 – 1.5922 0.2243 –
89 1.6768 5.3727 – 2.6016 2.0404 –
90 1.6865 5.3785 8.4230 2.6315 2.0775 0.3380

100 1.7769 5.4337 8.4934 2.9299 2.4378 1.2985
n = 1 n = 2 n = 3 n = 1 n = 2 n = 3

one finds lmin = 25, 58, 91, respectively. Conversely for l =
58, 91, 100 one finds nmax = 1, 2, 3, respectively in compliance
with Eqs. (18) and (19). In fact if one considers the tables as the
wave number plane (l, n) the dashed portion of the plane is the
forbidden zone for a normal mode to exist. Analogs of these
features exist for the propagation of electromagnetic waves in
optical fibers.

The frequencies, ωnml and the damping rates, αnml, are
given in Tables 4–6. Both are in units of the interior Alfvèn
frequency. For a given m the frequencies increase with increas-
ing n and/or l. The behavior with increasing m is not so clear.
For example, one observes that ωn,0,100 > ωn,2,100 > ωn,1,100.
The damping rates are smaller than the frequencies by a fac-
tor of about S = R = 2 × 104, a numerical attestation to the
validity of the assumption of Eq. (21). They also increase with
increasing n and l.

6. Graphic presentations

To acquaint oneself with the characteristics of the magnetic
and velocity fields of the modes we give some sample plots.
By Eqs. (A3–4) δvz = 0, and δvr and δvφ are proportional and
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Fig. 2. Magnetic and velocity field components for m = 0 (sausage) modes. δBr and (−δvr) dash-dotted curves; δBz solid curves. No δBφ, δvφ
and δvz for m = 0. Auxiliary parameters are: l = 100, n = 1, 2, 3; C2

100 = 8.9, radius = 103 km, length = 105 km, and ρe/ρi = 0.1.

Table 4. Values of ωnml and αnml for m = 0 (sausage) modes with
radius = 103 km, length = 105 km, B = 100 G, ρi = 2×10−14 gr cm−3,
ρe/ρi = 0.1, ωA = 2 rad s−1 and S = R = 2 × 104. Both frequencies,
ωnml and the damping rates, αnml, are in units of the interior Alfvèn
frequency.

l ωnml αnml(×10−4)

25 – – – – – –

26 2.5533 – – 0.5188 – –

58 3.3171 – – 0.8756 – –

59 3.3407 5.8337 – 0.8881 2.7081 –

91 4.1264 6.4558 – 1.3550 3.3166 –

92 4.1518 6.4746 9.1285 1.3717 3.3359 6.6311

100 4.3571 6.6267 9.2916 1.5107 3.4947 6.8703

n = 1 n = 2 n = 3 n = 1 n = 2 n = 3

opposite to δBr and δBφ, respectively. All components of δB
and δu are plotted in Figs. 2 to 4. In accordance with the bound-
ary conditions of Eqs. (10), (11), the r- and z-components are
continuous at r = 1 but have discontinuous slopes. The φ-
component and its slope are both discontinuous. The ampli-
tudes are highly evanescent outside the tube and maybe ne-
glected for all practical purposes, for instance, in considering
the heating of corona. The number of nodes in each case is n.

Table 5. Same as Table 4, for m = 1 (kink) modes.

l ωnml αnml(×10−4)

1 0.0434 – – 0.0001 – –

40 1.4829 – – 0.1750 – –

41 1.5154 4.0473 – 0.1827 1.3035 –

74 2.5646 4.7377 – 0.5234 1.7862 –

75 2.5957 4.7589 7.4084 0.5361 1.8022 4.3675

100 3.3695 5.3079 7.8652 0.9035 2.2420 4.9228

n = 1 n = 2 n = 3 n = 1 n = 2 n = 3

The antinodes of δBz coincide with the nodes of δBr; for, δBr

is proportional to the derivative of δBz; see Eq. (A.1). The con-
verse is, however, not true. The nodes of δBφ and δBz occur
at the same place, for they are proportional to each other. See
Eqs. (17) and (A.2). For m = 1, however, there is an exception.
At r = 0, δBφ is finite and δBz has a node.

The velocity field has no z-component. Its transverse com-
ponents, δu⊥, are proportional and opposite in direction to δB⊥,
and have the same graphical representations. It should be re-
marked, however, that, because of i in Eqs. (4), (6), (A.1)
and (A.3) the phase of δBr and δvr differ from those of δBz,
δBφ, and δvφ by π/2.
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Fig. 3. Magnetic and velocity field components for m = 1 (kink) modes. δBr and (−δvr) dash-dotted curves; δBφ and (−δvφ) dashed curves; δBz

solid curves; no δvz. Auxiliary parameters as in Fig. 2.

Table 6. Same as Table 4, for m = 2 (fluting) modes.

l ωnml αnml(×10−4)

1 0.0434 – – 0.0001 – –

54 2.1003 – – 0.3510 – –

55 2.1350 5.4226 – 0.3627 2.3399 –

89 3.2602 6.0567 – 0.8458 2.9192 –

90 3.2922 6.0764 8.8849 0.8625 2.9382 6.2820

100 3.6093 6.2766 9.0558 1.0366 3.1350 6.5260

n = 1 n = 2 n = 3 n = 1 n = 2 n = 3

The densities of viscous and ohmic dissipation, Eq. (A.5)
and the integrand in Eq. (24) are plotted in Fig. 5. Comparing
Fig. 5 with Figs. 2 to 4, one concludes that the highest and
the lowest heating rates occur at the antinodes and nodes of
δBr and δvr, respectively. In regions exterior to the flux tube,
r > 1, the energy densities sharply drop to zero, supporting the
assertion that the wave energy and heat dissipations are not of
significance in the outer regions.

7. Concluding remarks

The modal structure of a magnetized flux tube under coronal
conditions is investigated. The dispersion relation is solved in

its most general form. The complete set of eigenfrequencies
and eigenfields are calculated. Each mode is specified by a trio
of wave numbers (n,m, l), pertaining to the (r, φ, z) directions,
respectively. Eigenfrequencies increase with increasing n and l.
For a given m, the wave number plane (n, l) has a forbidden
zone in which no eigenmode can exists. This sets an upper cut-
off for n and a lower cutoff for l. Asymptotic relations for de-
termining these cutoffs are given. In the outer regions of the
flux tube all components of δB and δu are much smaller and
are highly evanescent. Therefore, one should not be surprised
to find out that much of the heat is also generated within the
tube.

For weak viscous and ohmic dissipations, time-decay expo-
nents are calculated for each mode. The density of heat produc-
tion rates as functions of r are the same for both mechanisms.
Their contributions, however, are inversely proportional to the
Reynolds and Lundquist numbers, R and S , respectively. The
total dissipation time scale becomes proportional to (R−1+S −1).
The total generated heat is, of course, equal to the total initial
energy of the wave. We cannot asses the actual values of re-
sistivity and viscosity prevailing in coronal regions. One, how-
ever, finds the following values quoted in the literature:
Steinolfson & Davila (1993) use the values S = 103, 104,
and 105. Ofman et al. (1994) assume S = 104 and R = 560
in active coronal regions and S = 104 and R = 0.56, otherwise.
Viscosity in their analysis is compressional.
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Fig. 4. Magnetic and velocity field components for m = 2 (fluting) modes. Legend and auxiliary parameters as in Fig. 3.

Nakariakov et al. (1999) predict S = 1013 and R = 1014 on the-
oretical grounds and report S = 105−5.8 and R = 105.3−6.1 from
observational evidence.

The values S = R = 2×1010 employed in the present paper
is for an academic exercise and no further significance should
be attached to it.
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Appendix A: Some useful formulas

The key to the analysis of a mode is δBz,nml of Eq. (17).
Substituting this in Eq. (4) gives the remaining components of
δB. Thus,

δBr,nml =
il

Lx2
nml

dJm(xnmlr)
dr

ei(lz/L+mφ−ωnmlt), r < 1,

= − il

Ly2
nml

dKm(ynmlr)
dr

Anmlei(lz/L+mφ−ωnmlt), 1 < r, (A.1)

δBφ,nml = − l

Lx2
nml

m
r

Jm(xnmlr)ei(lz/L+mφ−ωnmlt), r < 1,

=
l

Ly2
nml

m
r

AnmlKm(ynmlr)ei(lz/L+mφ−ωnmlt), 1 < r. (A.2)

By Eqs. (4) and (6) δu⊥ is parallel to δB⊥, and by Eq. (5) δvz is
zero. Thus,

δu⊥,nml = −(Lωnml/lB)δB⊥,nml, (A.3)

δvz,nml = 0, 0 < r < ∞. (A.4)

The ohmic and viscous dissipation densities of Eq. (24) is

(S/2σ) | δ jnml(r) |2= (Rη/2) | δu.∇2δu |
=

(
ωA/16π2

) [
(l/Lxnml)2 + 1

]2
Ii, r < 1,

=
(
ωA/16π2

)
A2

nml

[
(l/Lynml)2 − 1

]2
Ie, 1 < r. (A.5)

The energy density of wave (dimensionless), the sum of kinetic
and magnetic energy densities is

ε =
1
2

{1
2
ρ | δunml |2 + 1

8π
| δBnml |2

}
,

=
1

16π

{ [
2(l/Lxnml)2 + 1

] (
Ii/x

2
nml

)
+ J2

m(xnmlr)
}
, r < 1,

=
1

16π
A2

nml

{ [
2(l/Lynml)2 − 1

] (
Ie/y

2
nml

)
+ K2

m(ynmlr)
}
, 1 < r.

(A.6)

The expressions Ii and Ie in Eqs. (A.5), (A.6) are

Ii =

(
dJm(xnmlr)

dr

)2

+
m2

r2
J2

m(xnmlr), (A.7)
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Fig. 5. Densities of ohmic and viscous dissipations (S/2σ) | δ jnml(r) |2= (Rη/2) | δu.∇2δu | in Eq. (A.5), values of (n,m, l) and legend are given
in the right hand caption. Auxiliary parameters are C2

100 = 8.9, radius = 103 km, length = 105 km, ρe/ρi = 0.1, ωA = 2 rad s−1, and
S = R = 2 × 104. In r > 1 dissipation is much small and does not show up in the plots.

Ie =

(
dKm(ynmlr)

dr

)2

+
m2

r2
K2

m(ynmlr). (A.8)

In calculating the total heat or energy of a mode, the third
equality in Eq. (24), the following integrals are needed.∫ 1

0
Iirdr = xJm(x)J′m(x) +

x2

2

{
J′2m (x)+

(
1 − m2

x2

)
J2

m(x)

}
,

x = xnml, (A.9)

∫ ∞

1
Ierdr = −yKm(y)K′m(y) − y

2

2

{
K′2m (y)−

(
1 +

m2

y2

)
K2

m(y)
}
,

y = ynml. (A.10)

As noted earlier, substituting Eqs. (A.5) and (A.6) in Eq. (24),
after some integrations by parts reveals that the total dissipation
over all times exactly equals the total initial energy of the wave.

Appendix B: Transverse Alfvèn modes

Setting δBz = 0 in Eqs. (1)–(2) in the absence of dissipation
leads to

∂2δB⊥
∂t2

= v2A
∂2δB⊥
∂z2

· (B.1)

Similar equation holds for δu⊥. Hollweg (1984), Roberts
& Ulmschneider (1997), Kivelson & Russell (1997), and
Nakariakov (2000) have passing remarks on these transverse,
or what is commonly called torsional, waves. Here we wish to
add a few details. The solution of Eq. (B.1) corresponding to
rigid boundary conditions at z = 0 and πL is

δB⊥ = δBi,e(r⊥)ei(lz/L−ωi,et), (B.2)

where i and e refer to the interior and exterior of the flux tube.
In particular ω2

i = v
2
Ai

l2/L2 and ω2
e = v

2
Ae

l2/L2. Let c(r⊥) = 0
be the boundary of the flux tube in the plane transverse to the
z-axis. Continuity of the normal component of δB requires

n ·
[
δBi(c)e−iωit − δBe(c)e−iωet

]
= 0, (B.3)

where n is a unit vector normal to c. The only way to satisfy
Eq. (B.3) for all times is to let

δBi(c) = δBe(c) = 0. (B.4)

That is to say, disturbances inside and outside the tube are not
coupled and evolve independently. In fact there are no dynam-
ics to determine the dependence of the wave on r⊥. Any arbi-
trary transverse disturbance in magnetic and velocity fields can
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propagate in the z-direction with the Alfvèn speed. In the ab-
sence of resistivity and viscosity, propagation is dispersionless
and dissipationless. Resistivity and viscosity causes the wave
to disperse and dissipate away.
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