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A time dependent cosmological constant violates the conservation of energy and momenta. Models
as such exhibit certain peculiarities. Only a combination of (density + pressure) remains in their
final formulation, leaving no room for an equation of state to play a role. Nevertheless, one may
build model universes that expand at accelerating rates.
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I. INTRODUCTION

One of the tenets of the standard model of cosmology
is the conservation of the energy momentum tensor. In
fact, the field equation of Einstein,

Gµν − λgµν = −8πGTµν , λ const., (1.1)

is so designed to yield

Gµν
;ν = 0, Tµν

;ν = 0. (1.2)

It is true that there are ample evidence to support con-
servation of the energy and momentum, Eq.(1.2), at the
present epoch and in vast cosmological expanses; but
there are no cogent reasons and/or convincing observa-
tions to extrapolate the concept to all cosmological times
and to the whole Universe.
On the other hand, Einstein’s cosmological constant,

originally introduced to be an all time constant, in recent
years and for certain purposes, is speculated to be a time
dependent parameter. Linde [1] considers a variable λ
in connection with spontaneous symmetry breakings in
QFT. Kastor [2] invokes it in his study of the thermody-
namics of black holes. One of us (JP) [3] also has felt the
need for a variable cosmological constant in his study of
the thermodynamics of Horova-Lifshitz’ quantum grav-
ity. A time dependent λ(t), however, violates the second
of Er.(1.2). Certain peculiarities develop not encountered
in the standard models and, to the best of our knowledge,
not addressed in the literature.
Here we analyse a perfect fluid-filled Friedmann uni-

verse in the presence of a time dependent cosmological
constant (never mind calling a variable a constant). The
work is not claimed to be a finished one. It is presented
with the hope of inviting comments from the community
of experts.

II. EXPOSITION OF THE PROBLEM

Let λ(t) be a function of time and take the 4-divergence
of Eq.(1.1). Considering that Gµν

;ν = 0, one obtains

λ,νg
µν = 8πGTµν

;ν . (2.1)

In a Friedmann universe with a perfect fluid content, one
has

ds2 = −dt2 +R(t)2
[

dr2

1− kr2
+ r2dΩ2

]
, (2.2)

Tµν = pgµν + (ρ+ p)UµUν , Uµ : (1, 0, 0, 0). (2.3)

Equation(2.1) reduces to

λ̇ = −8πG

[
ρ̇+ 3

Ṙ

R
(ρ+ p)

]
.

Upon integration one obtains

λ = ± 3

θ2
− 8πG

[
ρ+ 3

∫ t Ṙ

R
(ρ+ p)dt

]
, (2.4)

where ±3θ−2 is an integration constant (a constant cos-
mological constant, so written for later convenience). De-
fined as such, θ has the dimension of time. Substituting
Eq.(2.4) in Eq.(1.1) and writing out its time-time and
space-space components gives

1

R2
(Ṙ2 + k) = ± 1

θ2
− 8πG

∫ t Ṙ

R
(ρ+ p)dt, (2.5)

1

R2
(2R ˙̇R+ Ṙ2 + k) =

± 3

θ2
− 8πG

[
(ρ+ p) + 3

∫ t Ṙ

R
(ρ+ p)dt

]
.(2.6)

Taking the time derivative of Eq.(2.5) gives

1

R2
(R ˙̇R− Ṙ2 − k) = −4πG(ρ+ p). (2.7)

The three Eqs.(2.5) - (2.7) are, however, not independent.
Adding three times of Eq.(2.5) to two times of Eq.(2.7)
gives Eq.(2.6). Only the combination (ρ + p) appears
in these equations. This is in contrast to the standard
perfect fluid-filled cosmological models, in which ρ and
p play independent roles, and allow one to invite in an
equation of state, p(ρ), and have an additional degree of
freedom to maneuver. Evidently, this freedom is used



2

up in the process of expressing λ in terms of ρ and p,
Eq.(2.4).
With the assumptions made so far, there is no clue as

to how ρ, p, (ρ + p), or for that matter the Hubble pa-
rameter and deceleration parameters, and the expansion
factor evolve in time. A new physical input is needed to
proceed further. One convenient provision is to assume

4πG(ρ+ p) =
1

τ2
f(R),

1

τ2
= 4πG(ρ̂+ p), (2.8)

where f(R) is a dimensionless function of R to be de-
cided as one may desire and τ is a characteristic time of
the model, to be calculated from some mean density and
pressure of the model. For (ρ+p) = 10−29gr/cm

3
, about

the density of the actual Universe, one finds

τ = 11× 109 yr.

Substituting Eq.(2.8) in Eq.(2.5), one arrives at a non-
linear integro-differential equation for R . Thus,(

Ṙ

R

)2

+
k

R2
= ± 1

θ2
− 2

τ2

∫ t Ṙ

R
f(R)dt. (2.9)

For whatever it may be worth, below we examine three
examples for k = 0 and various assumptions for θ−2

and f(R), just to demonstrate how one may proceed to
construct one’s own toy models.

Example 1. In Eq.(2.9 let k = 0, choose +θ−2, and
assune f(R) = 1, i.e. a constant (ρ + p) (one may wish
to call the model a steady state universe, of course, not
in the sense that Hoyle and Narlikar have used the term
before [4]). Further let

F =

∫ t Ṙ

R
dt,

Ṙ

R
= Ḟ .

Equation(2.9) reduces to

Ḟ 2 = θ−2 − 2F/τ2, Ḟ = ±(θ−2 − 2F/τ2)1/2. (2.10)

Upon integration of Eq.(2.10) one obtains F , R, the Hub-

ble parameter, H = Ṙ/R, and the deceleration parame-

ter, q = −R ˙̇R/ṙ2:

F =
1

2
[τ2/θ2 − (t0 − t)2/τ2], (2.11)

R = R0 exp[−(t0 − t)2/2τ2], (2.12)

H = (t0 − t)/τ2 = Ḟ = Ṙ/R, (2.13)

q = [τ2/(t0 − t)2 − 1], (2.14)

where t = 0 represents the present epoch. The integra-
tion constant, t0, may be determined from Eq.(2.13) in
terms of the Hubble constant at the present epoch. Thus,
for H0 = 100h km/s Mps one finds

t0 = H0τ
2 ≈ 12h× 109 yrs.

1

-1

H

q

R

q = -1

Ht-t0L�Τ

FIG. 1: Hubble parameter H, Deceleration parameter, q, and
Scale Factor, R, as functions of time for a constant (ρ+p). In
the range t < t0−τ , the model has an accelerating expansion.
Scale factor is Gaussian. There is no big bang. The model
begins from zero size in the infinitely remote past and fades
away in the infinitely remote future.

The Hubble parameter is linear in time, positive in
t < t0 and negative otherwise. The scale factor, R, is
Gaussian in time with a characteristic e-folding time√
2τ . It has been zero in the infinitely remote past and

will be so in the infinitely remote future. The model
will expand to its maximum size R0 in the future time
t = t0. The deceleration parameter, q, is negative (i.e.
expansion accelerates) if |t − t0| > τ . Figure 1 is a
plot of R, H and q versus time. The time span during
which H is positive and q negative (i.e. the model has
an accelerating expansion) is marked by the thick black
line. The plot of q has two asymptotes: 1) q → −1 as
(t− t0) → ±∞, and q → ∞ as (t− t0) → 0.

Example 2. In Eq.(2.9) let k = 0, choose +θ−2, assume
f(R) = R−1, i.e. a decreasing (ρ + p)proportional R−1,
and obtain:

Ṙ2

R2
=

1

θ2
+

2

τ2
1

R
=

1

θ2

[
1 + 2

R0

R

]
, (2.15)

where R0 = (θ/τ)2, and a possible integration constant
in integrating

∫
dRf(R)/R is absorbed in the redefined

θ. Solutions to Eq.(2.15) are

R = R0[cosh(t− t0)/θ − 1], (2.16)

H =
1

θ

sinh(t− t0)/θ

cosh(t− t0)/θ − 1
, (2.17)

q = − cosh(t− t0)/θ

cosh(t− t0)/θ + 1
. (2.18)

Again t0 is an integration constant. At t = 0 one has

H0 = −1

θ

sinh(t0/θ)

cosh(t0/θ)− 1
, (2.19)

q0 = − cosh(t0/θ)

cosh(t0/θ) + 1
. (2.20)

Given H0 and q0 one may find θ and t0/θ. Thus

t0
θ

= cosh−1(
q0

q0 + 1
),
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FIG. 2: Hubble parameter, H, deceleration parameter, q, and
Expansion factor, R, versus time for (ρ+ p) ∝ R−1 and +θ2

term. Deceleration is an all time negative. Hubble parameter
is positive in the range (t− t0) > 0. Big bang begins at (t−
t0) = 0. Vicinity of the infinite asymptote ofH is suggested as
an inflationary phase. Plots are symmetric about (t− t0) = 0
axis, suggesting a time reversed evolutionary past much the
same as the evolution to the futre.

θ2 =
1

H2
0

(2|q0| − 1) > 0, realized for |q| > 0.5.

Figure 2 is a plot of H, q, and R, as functions of time,
for (ρ + p) ∝ R−1. The deceleration parameter is an all
time negative and falls in range −1 ≤ q ≤ −1/2. The
time span during which H is positive and q negative
is (t − t0) ≥ 0, and is marked by the thick black line.
Big bang, R = 0, begins at (t − t0) = 0 with an infinite
expansion rate (can one call this an inflationary phase?
The e-fold droping time of H, however, is θ, not perhaps
short enough to justify the common usage of the term
inflation). The plots are symmetric about (t − t0) = 0
axis, suggesting a time reversed evolutionary past much
the same as the evolution to the future.

Example 3. In Eq.(2.9) let k = 0, chooe −θ−2 term,
assume f(R) = R−1, a decreasing (ρ+ p), and obtain:

Ṙ2

R2
=

2

τ2
1

R
− 1

θ2
=

1

θ2

[
2
R0

R
− 1

]
, (2.21)

where, again, R0 = (θ/τ)2, and a possible integration
constant in integrating

∫
dRf(R)/R is absorbed in the

redefined θ. Solutions to Eq.(2.21) are

R = R0[1 + cos(t− t0)/θ], (2.22)

H = −1

θ

sin(t− t0)/θ

1 + cos(t− t0)/θ
, (2.23)

q =
cos(t− t0)/θ

1− cos(t− t0)/θ
. (2.24)
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FIG. 3: Hubble parameter, H, deceleration parameter, q,
and scale Factor, R, as functions of time for (ρ + p) ∝ R−1

and −θ−2 term. The model is periodic in cosmic time. The
model has an accelerating expansion in the range −π/2 <
(t−t0)/θ < 0, . Big bang and big crunch occur in (t−t0)/θ =
−π/2 and 3π/2, respectively.

At t = 0 one has

H0 =
1

θ

sin(t0/θ)

1 + cos(t0/τ)
, (2.25)

q0 =
cos(t0/τ)

1− cos(t0/τ)
. (2.26)

Equation(2.25) enables one to estimate t0/τ from the
present day Hubble constant of the model. Thus,

t0
θ

= cos−1

(
q0

1 + q0

)
,

θ2 = 1 + 2q0, realized for q0 < 0.5.

Figure 3 is a plot of H, q, and R, as functions of time,
for (ρ+ p) ∝ R−1. The model is periodic in cosmic time.
The minimum value of the Deceleration parameter is
−0.5. It has ±∞ asymptotes at (t − t0)/θ → 0, π, 2π,
... . In the range −π/2 < Ω(t − t0) < 0, there is an
accelerating expansion. Big bang and big crunch occur
in Ω(t− t0) = −π/2 and 3π/2, respectively.

III. CONCLUDING REMARKS

A time varying cosmological constant violates the en-
ergy momentum conservation. Only the combination
(ρ + p) appears in the final conclusions. The indepen-
dent identity of ρ and p and along with it the need for an
equation of state is lost in the process. A new assumption
as to how (ρ+ p) evolves in time is required.
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One has the freedom to design one’s own toy mod-
els, by choosing appropriate input data and integration
constants, to mimic the actual Universe to one’s desire.
Three examples are examined here:

i. k = 0, +θ−2 term, and (ρ+ p) constant,

ii. k = 0, +θ−2 term, and (ρ+ p) ∝ R−1,

iii. k = 0, −θ−2 term, and (ρ+ p) ∝ R−1.

All three have analytical solutions and all have time in-
tervals in which the models expand at accelerating rates.
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