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Abstract. The surfaces of section in a harmonic oscillator potential, perturbed by quartic terms,
are obtained analytically. A succession of action-angle, Lissajous and Lie transformations near the
1:1 commensurability, reduces the three-dimensional motion to a one-dimensional one. The latter is
solved in terms of Jacobi’s elliptic functions. Existence conditions for periodic orbits are found and
two general families of such solutions are introduced. Two examples of regular motions in oblate
and prolate spheroids are discussed.
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1. Introduction

Internal dynamics of galactic systems has been an attractive field of research in recent
years. Perturbed harmonic oscillators in two dimensions, have been investigated by
Deprit and Elipe [1], Miller [2], Caranicolas [3], Elipe et al. [4] and Contopoulos
and Polymilis [5]. Numerically constructed Poineanaps and mapping models like

that of Wisdom [6] have been used in these papers. In certain circumstances, it has
also been possible to integrate the equations of motion analytically. For example, by
a transformation to Hopf’s coordinates, Deprit and Elipe [1] were able to solve their
normalized Hamiltonian system by elliptic functions.

In three dimensions, regular periodic orbits inside elliptical galaxies have been
considered by Davoust [7, 8] and Jalali et al. [9]. They have used the Peincar
Lindstedt and the implicit function methods, respectively. The existence conditions
of periodic orbits at exact resonances along with the initial conditions leading to such
solutions have been determined. This paper further considers three-dimensional har-
monic oscillators perturbed with quartic potentials and provides analytical solutions
for motions near the 1:1 resonance. In Sections 2, 3 and 4 we integrate the equations
of motion by quadratures. In Section 5 we investigate possible types of periodic and
quasi-periodic orbits and their surrounding tubes. In Section 6 we study local stability
of oblate and prolate galaxies. We show that equatorial motions in oblate galaxies
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are locally stable as long as the perturbative analytical scheme remains valid, while
in prolate systems they can be unstable.

2. Quartic Hamiltonians and Normalization by Lie Transformations

We consider a spheroidal galaxy with a quadratic mass distribytion, pg[1 —

(x% + y?)/a? — 7?/c?]. The corresponding potential, as given by Lebovitz [10], is
quartic in (, y, z). The Hamiltonian of a mass point moving in such a potential is
given by Davoust [8],

H = Ho+ e Hy, (1a)
Ho= 3(X?>+Y?+ Z%) + 30°(x% + y?) + 3222 + Q(xY — yX), (1b)
Hy = —3yz* — ja(x? +y?)? — 1B(x2 + yH)2?, (1c)
X=x+Qy, Y=y—Qx, Z=z, (2d)

wherex is a perturbation parameter and will eventually be put equal tawcsredc are
the semi-axes of the spheroid,is the solid-body rotation frequency of the galaxy,
A is the unperturbed orbital frequency along thaxis andw is the unperturbed
frequency associated with the elliptic anomaly of ¥k oscillations. It should be
noted that the andx—yoscillations are coupled via the parametefrrom [10], the
constant parameters, 8, y, @ andx are functions of the eccentricity of the galaxy
through the following relations

5 e3 du e3du

o o
W = , k2:/ s
/o (81 +u)?/d1+u 0 (814+u)(02+u)a/é2+u

a_/oo e® du ﬂ_/oo e®du @)
o G+ uds+u Jo Gt w2+ uStu

_/OO e° du
r= 0 (B2+u)2@14+u)Sa+u

where

2
e2=1-— (E) , 81=1 & =1—¢* if ¢ <a (oblate spheroids
a

2
e2=1-— (E) , 1=1—¢% 8,=1; if c¢>a (prolate spheroids
C

The zero order Hamiltonian is fully integrable and has the following integrals

wl = %(X2 +7Y?) + %wz(x2 + y?), (3a)
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QG =QxY —yX), (3b)
AK = 7%+ 23222, (3¢c)

A generalized action-angle canonical transformatidh.g, k, L, G, K) —
(x,y,z,X,Y,Z), can be devised to expresh in its integrals, wherei( g, k) are
the angle variables and.( G, K) are their conjugate actions, respectively. Thus,

x =scogg+1)—dcogg — 1), (4a)
y=ssin(g +1) —dsin(g — 1), (4b)
X = —w[ssin(g + 1) +dsin(g — )], (4c)
Y = w[scogg + /) +dcogg —1)], (4d)
52 = i(L + G), d? = i(L - G), (4e)
2w 2w
7= ,/ZTKsink, (5a)
Z = /2K X cOSk. (5b)

Equations (4) are the Lissajous transformations of Deprit [11]. The variables
(I, g,k,L,G, K) are defined in the domain

D =0, 27[x[0, 27 [x][0, 2r[x{L > O} x {|G| < L} x {K > 0O} (6)
The Hamiltonian transforms to
Ho = oL + QG + 1K, (7a)
1T « 48 3y
H = —=-|—@BL>’-G>) + =KL+ =2 K?
! 8 |:a)2( )+ wh + 22 ] +
1 /8 14 Y 2
— | —-L+>-K)K cos &Z— —K*“cos &
T (a) 3 ) 812 *
1
(% PR VIZ—GPeos 2 — % (12— G?) cos 4 —
20 \w A 8w?
— %K\/LZ — G2[cos(2k + 2I) + cos(2k — 21)]. (7b)

The angleg has become cyclic an@ is an integral of the total Hamiltonian in
addition to that of the zero order one. This reduces the six-dimensional phase space
to a four-dimensional one.



258 M. A. JALALI AND Y. SOBOUTI

Thek angle describes the oscillationsziulirection, and, the elliptic anomaly of
the orbits, is that in thg—yplane. In nearly spherical galaxies, let= (A — w) /€ be
small. Therefore, near the 1.1 commensurability the atigle 1) will vary slowly.
Correspondingly, to separate the Hamiltonian into slowly and rapidly varying terms,
we go to a rotating system about thexis with the angular frequeney. This can
be achieved by a canonical transformatigng, P, Q) — (, k, L, K) through the
generating functios = (k — 1) Q + [ P. One obtains

N N
q:—:k—l’ p:—:l’
EYo) P
(8)
CA 0 [ — as P_0
ok ol '
The transformed Hamiltonian, ignoring the constant termG ibecomes
HQ = a)P,
K 2 B 3y 2
H; = — —(P - ———Q(P—-Q)— —
1= 10— o5 (P= Q=5 —0(P-0) - 50°+

B

1 Y Y
+5|:5(P—Q)+XQ]QCOSZQ+P)—

@QZ cos 4g + p) +

+i[ﬁ(l)—Q>+EQ]¢<P—Q)2—02cosao—
20 |w A
Y (P02 G _

g2l (P — @ —G7cos &

— %QV(P — 0)? — G?[cos 2Aq + 2p) + cos Z]. 9)

Heregq is the slow angle andis the fast one. The latter can be made cyclic by carrying
out a first order Lie transformatiaip’, ¢’, P, Q') — (p, g, P, Q), thatamounts to
averaging (9) over the fast angle [12]. The normalized Hamiltonian becomes

ﬁ = wP’ —+ Eﬁl,

where
21

7 / / / l / 4 / / /

Hi(q', P, Q) = o Hi(p',q', P', Q") dp". (10)
7T Jo

By suppressing primes for brevity, one obtains

— 3o 2
H = a)P—G@P +EF(q,Q),

_ 1(8x_ 28 14 3« 3y 2 _
F_|:'u+4(a)2 w)»)P]Q+8(a))\ w? AZ)Q

P oosP_or_c?
—%AQ (P — 0)2— G2cos 3. (11)
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One only has to solve for the motion generated by the HamiltoAian Q). In the
following section, we integrate the relevant equations analytically in terms of Jacobi’s
elliptic functions.

3. Integration by Quadratures

The Hamiltonian of (11) is of the form

F = 410 + A20% + A3R(Q) cosmg, (12)
whereg andQ are conjugate angle and action variables, respectimglyan integer
and

R*(Q) = Bo+ B1Q + B20% + B3Q° + B4Q*, (13)

with A;’s and B;’s being real constants. Such Hamiltonians are integrable in terms
of elliptic functions. Relevant equations of motion are

d oFr dR
G _ 0 _ 4 4 24,0 + 4,289

cosmgq, (14a)

dt ~ 3Q do
do  aF .
i mA3R(Q) sinmgq. (14b)

The HamiltonianF is an integral of motion. Solving (12) for cesg and sinng,
and substituting in (14b) yields

do B
V(0

where
fa(Q) = CoQ* +4C10° + 6C20% + 4C30 + Ca,
Co= A%3Bs— A3, C1=3A3B3— A1A;,
Co = 3A3B; + §FA; — ¢AZ,
C3=3FA1+ A3B1, C4= A3Bo— F2.

mdt, —oo <t < 400, (15)

(16)

Let zo be any root of equatiofiy(Q) = 0. A change of variable fron® to [13]

£ =Dyt 23
- 2 Q . ZO,
1 1 d(-
Dy = ﬂfl{/(zo), D3 = erz{(zo), ()= dLQ) (17)
transforms Equation (15) to
dg /

=2m | dr, — ~+o0, 18

fws—sl)(é—szxs—ss) hoTeestEe (19)
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whereé;, & andéz are the roots of the following cubic equation

453 — Gt — G3 =0, (19)
with

Gy = CoCq — 4C1C3 + 3C5,

G3 = CoCaC4+ 2C1C2C3 — C3 — CoC2 — C2Cy.

Using the transformation [14]

A2 — El - 53’ (20)
§ — &3
Equation (18) can then be written in its canonical form
dA . P-4
=X c, —00<t<—+00,
V(L= A2)(1—«2A2)
(21)
x=mE—&, «*= 25
&1 — &3
The solution forA in terms of Jacobi’s elliptic function, sn, is
A =sn(xt +c, k), (22)

wherec is a constant given by initial conditions. Substituting (22) in (20) and then
in (17) gives

Ezsrlz(XI+C,K)—E177 K2

= 1,
© SrP(xt +c,k) — 1 =
§&3— & Ds
= . Ei=1z0, Eo= ) 23
1 §3— D> Lo 2 Zo—i_és—Dz (23)
Finally from (12) one gets
1 F—A10 — Ay02
g = — arccos [ 10 — 420 ] : (24)
m A3R(Q)
Our Hamiltonian (11) belongs to the class of (12) with
1/3a 28 1/48 3o 3y p
AM=pu+-(S-=)P A= -=-5), As=———,
1=pt 4 (a)2 a)A) "8 (a))\ w? Az) 3 4w

By=P*—G? B3=-2P, By=1 By=B1=0 m=2
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4. Solutions in Terms of Initial Conditions

From (23) at = 0, Q = Qp andg = gg, one obtains

| Qo— Ex
’ ::l: ’
sn(c, k) nQO_E2

cn(e, k) = + A-nQo+ (nE1 — Ez)’ -
QO —E;

dn(c, k) = \/(1 — Kzn)QO + (Kanl _ EZ)‘
QO —E>

Therefore, from (12), (16) and (19) one gets
& =&i(q0, Qo) (=123,
n=1n(qo, Qo) x = x(qo, Qo), « =«(qo, Qo).

Equations (25) may now be used in the addition theorem for elliptic functions
sn(xt, k)cn(e, k)dn(c, k) + cn(xt, k)sSn(c, k)dn(xz, )

sn(xt+c,k) = 1 — k2sr?(xt, k)sri(c, k)

.(26)

to yield
V(go. Qo.1) = SIP(xt +¢.x)
= {[A—n Qo+ E1— E][(1— nc®) Qo +
+ (K®nE1 — E)] - SrP(xt, k) +n(Qo — E1)(Qo — E2) X
x cr?(xt, k) - dré(xt, k) £ 2sn(xt, k) - cn(xt, k) x
x dn(xz, k) - [n(Qo — E1)(Qo — E2)(1—n)Qo +
+ (E1 — E2)((1 — nic®) Qo + (k*nE1 — E2))]Y?)
/((Qo — E2)* + k*n? - srf(xt, k) - (Qo — E)® —
— 2c*1(Qo — E1)(Qo — Ez) - SI(x1, ). (27)

Thus,Q andg may finally be given in terms o, go andzs as

E2V(qo, Qo, 1) — E1n
, Qo 1) = : 28
Co. Oo ) = 0 00 0) — 1 (282)

1 JA1(Q0 — 0) + A2(0F — 0% + A3R(Qo) COquo:|
q(qo, Qo, )= - arcc01 RO ’

(28b)
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which are the closed form solutions of the normalized system. In (11), the quantity
under the square root sign should be positive. Thus,@ < P — G is the allowable
region of the phase space for the motion.

Caranicolas [3] has considered

H=Hy+ H1(Q.,q) =d10(d2 — Q)(3 +¢€0s2), di,dz = constant (29)

Thisis the averaged Hamiltonian of a two-dimensional perturbed harmonic oscillator.

Equation (29) is a special case of (12). Thus, his regular solutions may be obtained
as a special case of (28).

5. Periodic Orbits

The fixed points of (14) can represent periodic motions. These points are found by
solving

drR(Q)
d(Q)

for Q with ¢ = 0, /2, m, 3nw/2. Denote them byg;, Q;). Correspondingly let
L; =P —Q;,K; =Q;andk; = g; + . For the motion associated with thi¢h
fixed point, one readily finds from (7)

A1 +2A,0 + As——— cos 7 =0, (30)

dg _dg /di Q+efa) Q1 Q

S ST X Z A - ha 31

d - d/ & aten) a)“a)[ﬁ() @fZ()}’ (31)

with

~ o ,3 KjG

Q=0 Lo+ 2 _DiZ 1, 32
+€(4a)2 + 0o = o COSZIA/) (32a)

\/ J

. a B B KiLj _

O=w 6(4w2Lj+2w)»K]+4w)\.\/LZ—G2COSZIJ ) (32b)

AD = L L Ky k) £ = OH Ly, K k) (32¢)

v 9G ’ 2= aL

where Hl(’) is the collection of those terms of (7b) that contain cosines of
2k, 4k, 21, 41 and (2k + 2I). These are the terms that in the integration gfdi
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don’t contribute to secular terms inThus,

1 /8 14 Y
HY = — (2L 4+ 2K ) K cos & — -~—K? cos &
! 2 (a) 3 ) 8).2 +
1
(Y PR V2 —GPeosa— % (12— G?) cos 4 —
20 \w A 8w?
B
— —— K+ L% — G2 cos(2k + 21). 33
4w (2k+2) (33)

Integrating (31) gives

Q 1 Q
g=—=l+e= [gl(l) - ng(l)} , (34)
w w w
where

I !
g1(D) =f f1(u) du, g2(0) =/ Sf2(u) du.
0 0

The functionsg1(!) andg»(l) are 2r-periodic inl. Thus, according to (4), (5) and
(34), the system undergoes periodic motiohifri2/&is rational. In order to visualize

the shapes of the orbits, we use pdlap, z) coordinates. Any orbit associated with
the fixed points of (14) lies on a surface of revolution with the parametric equations

1
r= \/Z[L,» — (L% — G2 cos 7],

Z : 6 € [0, 2r], (35)

2K;\%
z=|—7") sin+D,

1 €0, 2r].

Depending on the values gf’s, two general types of periodic and quasi-periodic
orbits emerge. Type | correspondsgp = 0, = for which X is a hyperboloid of

one sheet, Figure 1(a). Type Il is fgy = w /2, 3n /2. In this caseX is a spheroidal
surface, Figure 1(b), conformant with the shape of the galaxy. Neither the hyperboloid
nor the spheroid are complete. They are confined to surfaees (2K ; /1)Y/2. For
irrational /@, the orbits will be quasi-periodic and dense®nSuch classification

of orbits is not altered if one continues the normalization of the Hamiltonian up to the
second order im. The origin of the two-dimensional phase space of the normalized
system is the trivial fixed point associated with equatorial motions. The nature of this
point plays an important role in the stability of oblate and prolate galaxies which is
the subject of the next section.
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Figure 1a Figure 1b

6. Local Stability

In order to investigate the stability of equatorial motions, we introduce a canonical

change of variables as follows
1
0=>E*+nd), q= arctané
2 ]
Equations (14) transform to
§ = A+ Aan(E2 + 11°) + AanRu(§, n) + 3A3nR2(8, 1),

N =—A1f — A2k (E2 4+ 1n?) + AsER1(E, n) + FAsER2(E, 1),
with

Ra@.m = [(P?~ 367 = 307 - 67,

1 1 1
Ry, n) = ——— 2—2<P——2——2).
28, m) RiG. 1) (==& 58"~ 5N
Linearizing (37) about the originig = n = 0), gives

&= (A1+A3VP2=G?)n,
n= (—A1+A3\/ P2 — 62)5_

Correspondingly, the characteristic equation becomes

w?— A =0, A=A5P*-G? - AL

(36)

(37a)

(37b)

(38a)

(38h)

(39)
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The origin is a center i < 0 (stable equatorial motions) and a saddlaif- 0
(unstable equatorial motions). By combining these conditions @itk P2 (this is
a direct result of (6) and (8)), the following conditions are obtained

A>0 if G?< f(P,e) < P?
f(P’e)>O;‘{A<0 it f(P,e) < G2 < P2, (40a)
f(P,e)<0= A <O, (40b)

where
f(P,e) = (c2P? — 2¢1P — co1)/coz,
cor = 16p°w*\*,  cop = BPw?r?, 1 = 4uBaw’rt — 2BwiAd),
c2 = 120w — 9’14 — 382w

The analytical results of this paper are reliable for< 1 and 0 < ¢ < 0.6.
Outside this range of the parameters, perturbation approximation and closeness to
1:1 resonance break down. We have calculafé®, ¢) in this range of validity

and plotted in Figures 2(a) and 2(b) for prolate and oblate galaxies, respectively.
The origin of the averaged system can become a saddle point in prolate galaxies
(Figure 2(a)) indicating unstable equatorial motions. In oblate galaxies, however, the
origin remains a center leading to stable equatorial motions.

0.5

06 0
Figure 2a.Variations of f (P, ¢) in prolate galaxies.
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0.2
05 0.6 0

Figure 2b.Variations of f (P, ¢) in oblate galaxies.

7. Examples

We have used the formalism developed in this paper to study the orbits$00.19.

The constant parameteis A, «, 8, andy are calculated from (2) and are given in
Table I. For motions withP = 0.6 and for several choices 6fand initial conditions,

we have calculated = (2Q)Y? cosq andz = (2Q)Y? sing and plotted them in
Figures 3 and 4. All flows are confined to circles of radRis= (2P — 2G)*/?.
Center-type fixed points exist in both oblate and prolate spheroids. They indicate
stable periodic or quasi-periodic solutions. The origin itself stands for equatorial
motions. In the prolate system and for certain values of the angular momentum,
the origin is a saddle point. This implies that the equatorial motions of the prolate
spheroid are unstable and are subject to appreciable levitation indhection.
Periodic and quasi-periodic orbits of Type Il and their surrounding tubes, exist in
both the oblate and prolate systems. Orbits of Type | are to be found only in the
prolate spheroid.

TABLE |

Numerical values for the constant coefficients appearing in the original Hamilto-
nian fore? = 0.19.

&2 Shape w A a B y

0.19 Oblate 0.242334 0.258052 0.006776 0.007865 0.009147
0.19 Prolate 0.266440 0.250022 0.009872 0.008480 0.007298
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V4

Figure 3a.The phase portrait of the normalized Hamiltonian for an oblate spheroic:%vith0.19,
P =0.6 andG =0.2.

N

V4

Figure 3b.The phase portrait of the normalized Hamiltonian for an oblate spheroic:vith0.19,
P =0.6 andG = 0.5.
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Figure 4a.The phase portrait of the normalized Hamiltonian for a prolate spheroice®ith0.19,
P =0.6andG =0.2.

Figure 4b.The phase portrait of the normalized Hamiltonian for a prolate spheroice®ith0.19,
P =0.6 andG = 0.5.
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8. Discussion

This research was motivated by the work of Davoust [8]. The model presents motions
in spheroidal galaxies with quadratic density distributions:

(a) By the Lissajous transformation of Deprit [11] and a transformation to action
angle variables, the Hamiltonian is written in a form amenable to standard
perturbation techniques.

(b) By atransformation to a rotating coordinate system the Hamiltonian is split into
terms containing slowly and rapidly varying angles.

(c) The fast angle is averaged out by a Lie transformation and a normalized Hamil-
tonian with one degree of freedom is obtained.

(d) Finally, after some algebraic manipulations, the normalized system is integrated
in terms of Jacobi’s elliptic functions. Jacobi’s functions are doubly periodic and
have most of the useful properties of trigonometric functions such as addition
rules, the double angle formulae, etc. These features permit one to express the
solutions explicitly in terms of the initial conditions and time.

Davoust [8] studied the existence of periodic orbits at exact resonances for rational
values ofw/A. The formalism adopted in this paper allows us to consider irrational
/) as well.

Chaotic motions theoretically occur in the vicinity of the saddle points of the
averaged system. Thus, according to the results of Section 6, chaotic orbits can
emerge in prolate galaxies. On the evidence of Figure (2), oblate galaxies are more
stable than prolate ones, an intuitively expected feature, for, prolate galaxies are
exceptional occurrences.

Similarities exist between the findings of this paper and those of separable mod-
els. According to Sckel's theorem, the Hamilton—Jacobi equation is separated in
elliptical coordinates for Hamiltonians of the form (de Zeeuw, [15])

H

SUAT2P2+ 7202+ £,,2p2) + @(u, v, w),
fu) f) f(w)

Cwu—vu-—w) W—ww-u) (w—u)(w—v)

S(u,v,w) =

where £ is an arbitrary function ang -2, f,"2 and £, are functions of:, v and

w (see also [16]). In such systems four types of orbits emdrgres, short axis
tubes, outer long axis tubesdinner long axis tubesAlthough the system (1) is not
separable, it has similar types of orbits. Inner and outer long axis tubes of de Zeeuw
are similar to our Type | and Type |l orbits of prolate spheroids, respectively. Short
axis tubes of de Zeeuw are the analogs of our Type Il orbits for oblate spheroids.
Closed curves in the phase portrait of the averaged system (Figures 3 and 4) which
encircle the origin, are associated with box type orbits as seen ir-grendy-z
planes. However, they form tubes in tkey plane, forG is constant and does not
reverse sign during the motion.
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