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Abstract. The surfaces of section in a harmonic oscillator potential, perturbed by quartic terms,
are obtained analytically. A succession of action-angle, Lissajous and Lie transformations near the
1:1 commensurability, reduces the three-dimensional motion to a one-dimensional one. The latter is
solved in terms of Jacobi’s elliptic functions. Existence conditions for periodic orbits are found and
two general families of such solutions are introduced. Two examples of regular motions in oblate
and prolate spheroids are discussed.
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1. Introduction

Internal dynamics of galactic systems has been an attractive field of research in recent
years. Perturbed harmonic oscillators in two dimensions, have been investigated by
Deprit and Elipe [1], Miller [2], Caranicolas [3], Elipe et al. [4] and Contopoulos
and Polymilis [5]. Numerically constructed Poincaré maps and mapping models like
that of Wisdom [6] have been used in these papers. In certain circumstances, it has
also been possible to integrate the equations of motion analytically. For example, by
a transformation to Hopf’s coordinates, Deprit and Elipe [1] were able to solve their
normalized Hamiltonian system by elliptic functions.

In three dimensions, regular periodic orbits inside elliptical galaxies have been
considered by Davoust [7, 8] and Jalali et al. [9]. They have used the Poincaré–
Lindstedt and the implicit function methods, respectively. The existence conditions
of periodic orbits at exact resonances along with the initial conditions leading to such
solutions have been determined. This paper further considers three-dimensional har-
monic oscillators perturbed with quartic potentials and provides analytical solutions
for motions near the 1:1 resonance. In Sections 2, 3 and 4 we integrate the equations
of motion by quadratures. In Section 5 we investigate possible types of periodic and
quasi-periodic orbits and their surrounding tubes. In Section 6 we study local stability
of oblate and prolate galaxies. We show that equatorial motions in oblate galaxies
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are locally stable as long as the perturbative analytical scheme remains valid, while
in prolate systems they can be unstable.

2. Quartic Hamiltonians and Normalization by Lie Transformations

We consider a spheroidal galaxy with a quadratic mass distribution,ρ = ρ0[1 −
(x2 + y2)/a2 − z2/c2]. The corresponding potential, as given by Lebovitz [10], is
quartic in (x, y, z). The Hamiltonian of a mass point moving in such a potential is
given by Davoust [8],

H = H0 + εH1, (1a)

H0 = 1
2(X2 + Y 2 + Z2) + 1

2ω2(x2 + y2) + 1
2λ2z2 + �(xY − yX), (1b)

H1 = −1
4γ z4 − 1

4α(x2 + y2)2 − 1
2β(x2 + y2)z2, (1c)

X = ẋ + �y, Y = ẏ − �x, Z = ż, (1d)

whereε is a perturbation parameter and will eventually be put equal to one,a andc are
the semi-axes of the spheroid,� is the solid-body rotation frequency of the galaxy,
λ is the unperturbed orbital frequency along thez-axis andω is the unperturbed
frequency associated with the elliptic anomaly of thex–yoscillations. It should be
noted that thez andx–yoscillations are coupled via the parameterβ. From [10], the
constant parameters,α, β, γ , ω andλ are functions of the eccentricity of the galaxy
through the following relations

ω2 =
∫ ∞

0

e3 du

(δ1 + u)2
√

δ1 + u
, λ2 =

∫ ∞

0

e3 du

(δ1 + u)(δ2 + u)
√

δ2 + u
,

α =
∫ ∞

0

e5 du

(δ1 + u)3
√

δ2 + u
, β =

∫ ∞

0

e5 du

(δ1 + u)(δ2 + u)
√

δ2 + u
,

γ =
∫ ∞

0

e5 du

(δ2 + u)2(δ1 + u)
√

δ2 + u
,

(2)

where

e2 = 1 −
( c

a

)2
, δ1 = 1, δ2 = 1 − e2; if c < a (oblate spheroids),

e2 = 1 −
(a

c

)2
, δ1 = 1 − e2, δ2 = 1; if c > a (prolate spheroids).

The zero order Hamiltonian is fully integrable and has the following integrals

ωL = 1
2(X2 + Y 2) + 1

2ω2(x2 + y2), (3a)
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�G = �(xY − yX), (3b)

λK = 1
2Z2 + 1

2λ2z2. (3c)

A generalized action-angle canonical transformation,(l, g, k, L, G, K) →
(x, y, z, X, Y, Z), can be devised to expressH0 in its integrals, where (l, g, k) are
the angle variables and (L, G, K) are their conjugate actions, respectively. Thus,

x = s cos(g + l) − d cos(g − l), (4a)

y = s sin(g + l) − d sin(g − l), (4b)

X = −ω[s sin(g + l) + d sin(g − l)], (4c)

Y = ω[s cos(g + l) + d cos(g − l)], (4d)

s2 = 1

2ω
(L + G), d2 = 1

2ω
(L − G), (4e)

z =
√

2K

λ
sink, (5a)

Z =
√

2Kλ cosk. (5b)

Equations (4) are the Lissajous transformations of Deprit [11]. The variables
(l, g, k, L, G, K) are defined in the domain

D = [0, 2π [×[0, 2π [×[0, 2π [×{L > 0} × {|G| 6 L} × {K > 0}. (6)

The Hamiltonian transforms to

H0 = ωL + �G + λK, (7a)

H1 = − 1

8

[
α

ω2
(3L2 − G2) + 4β

ωλ
KL + 3γ

λ2
K2

]
+

+ 1

2λ

(
β

ω
L + γ

λ
K

)
K cos 2k − γ

8λ2
K2 cos 4k +

+ 1

2ω

(
α

ω
L + β

λ
K

) √
L2 − G2 cos 2l − α

8ω2
(L2 − G2) cos 4l −

− β

4ωλ
K

√
L2 − G2 [cos(2k + 2l) + cos(2k − 2l)]. (7b)

The angleg has become cyclic andG is an integral of the total Hamiltonian in
addition to that of the zero order one. This reduces the six-dimensional phase space
to a four-dimensional one.
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Thek angle describes the oscillations inz-direction, andl, the elliptic anomaly of
the orbits, is that in thex–yplane. In nearly spherical galaxies, letµ = (λ − ω)/ε be
small. Therefore, near the 1:1 commensurability the angle(k − l) will vary slowly.
Correspondingly, to separate the Hamiltonian into slowly and rapidly varying terms,
we go to a rotating system about thez-axis with the angular frequencyω. This can
be achieved by a canonical transformation(p, q, P, Q) → (l, k, L, K) through the
generating functionS = (k − l)Q + lP . One obtains

q = ∂S

∂Q
= k − l, p = ∂S

∂P
= l,

K = ∂S

∂k
= Q, L = ∂S

∂l
= P − Q.

(8)

The transformed Hamiltonian, ignoring the constant terms inG, becomes

H0 = ωP,

H1 = µQ − 3α

8ω2
(P − Q)2 − β

2ωλ
Q(P − Q) − 3γ

8λ2
Q2 +

+ 1

2λ

[
β

ω
(P − Q) + γ

λ
Q

]
Q cos 2(q + p) − γ

8λ2
Q2 cos 4(q + p) +

+ 1

2ω

[
α

ω
(P − Q) + β

λ
Q

] √
(P − Q)2 − G2 cos 2p −

− α

8ω2
[(P − Q)2 − G2] cos 4p −

− β

4ωλ
Q

√
(P − Q)2 − G2 [cos 2(q + 2p) + cos 2q]. (9)

Hereq is the slow angle andp is the fast one. The latter can be made cyclic by carrying
out a first order Lie transformation(p′, q ′, P ′, Q′) → (p, q, P, Q), that amounts to
averaging (9) over the fast angle [12]. The normalized Hamiltonian becomes

H = ωP ′ + εH 1,

where

H 1(q
′, P ′, Q′) = 1

2π

∫ 2π

0
H1(p

′, q ′, P ′, Q′) dp′. (10)

By suppressing primes for brevity, one obtains

H = ωP − ε
3α

8ω2
P 2 + εF (q, Q),

F =
[
µ + 1

4

(
3α

ω2
− 2β

ωλ

)
P

]
Q + 1

8

(
4β

ωλ
− 3α

ω2
− 3γ

λ2

)
Q2 −

− β

4ωλ
Q

√
(P − Q)2 − G2 cos 2q. (11)
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One only has to solve for the motion generated by the HamiltonianF(q, Q). In the
following section, we integrate the relevant equations analytically in terms of Jacobi’s
elliptic functions.

3. Integration by Quadratures

The Hamiltonian of (11) is of the form

F = A1Q + A2Q
2 + A3R(Q) cosmq, (12)

whereq andQ are conjugate angle and action variables, respectively,m is an integer
and

R2(Q) = B0 + B1Q + B2Q
2 + B3Q

3 + B4Q
4, (13)

with Ai ’s andBi ’s being real constants. Such Hamiltonians are integrable in terms
of elliptic functions. Relevant equations of motion are

dq

dt
= ∂F

∂Q
= A1 + 2A2Q + A3

dR(Q)

dQ
cosmq, (14a)

dQ

dt
= −∂F

∂q
= mA3R(Q) sin mq. (14b)

The HamiltonianF is an integral of motion. Solving (12) for cosmq and sinmq,
and substituting in (14b) yields∫

dQ√
f4(Q)

=
∫

m dt, −∞ < t < +∞, (15)

where

f4(Q) = C0Q
4 + 4C1Q

3 + 6C2Q
2 + 4C3Q + C4,

C0 = A2
3B4 − A2

2, C1 = 1
4A

2
3B3 − 1

2A1A2,

C2 = 1
6A

2
3B2 + 1

3FA2 − 1
6A

2
1,

C3 = 1
2FA1 + 1

4A
2
3B1, C4 = A2

3B0 − F 2.

(16)

Let z0 be any root of equationf4(Q) = 0. A change of variable fromQ to [13]

ξ = D2 + D3

Q − z0
,

D2 = 1

24
f ′′

4 (z0), D3 = 1

4
f ′

4(z0), (·)′ ≡ d(·)
dQ

, (17)

transforms Equation (15) to∫
dξ√

(ξ − ξ1)(ξ − ξ2)(ξ − ξ3)
= 2m

∫
dt, −∞ < t < +∞, (18)
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whereξ1, ξ2 andξ3 are the roots of the following cubic equation

4ξ3 − G2ξ − G3 = 0, (19)

with

G2 = C0C4 − 4C1C3 + 3C2
2,

G3 = C0C2C4 + 2C1C2C3 − C3
2 − C0C

2
3 − C2

1C4.

Using the transformation [14]

32 = ξ1 − ξ3

ξ − ξ3
, (20)

Equation (18) can then be written in its canonical form∫
d3√

(1 − 32)(1 − κ232)
= χt + ccc, −∞ < t < +∞,

χ = m
√

ξ1 − ξ3, κ2 = ξ2 − ξ3

ξ1 − ξ3
.

(21)

The solution for3 in terms of Jacobi’s elliptic function, sn, is

3 = sn(χt + ccc, κ), (22)

whereccc is a constant given by initial conditions. Substituting (22) in (20) and then
in (17) gives

Q = E2sn2(χt + ccc, κ) − E1η

sn2(χt + ccc, κ) − η
, κ2 < 1,

η = ξ3 − ξ1

ξ3 − D2
, E1 = z0, E2 = z0 + D3

ξ3 − D2
. (23)

Finally from (12) one gets

q = 1

m
arccos

[
F − A1Q − A2Q

2

A3R(Q)

]
. (24)

Our Hamiltonian (11) belongs to the class of (12) with

A1 = µ + 1

4

(
3α

ω2
− 2β

ωλ

)
P, A2 = 1

8

(
4β

ωλ
− 3α

ω2
− 3γ

λ2

)
, A3 = − β

4ωλ
,

B2 = P 2 − G2, B3 = −2P, B4 = 1, B0 = B1 = 0, m = 2.
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4. Solutions in Terms of Initial Conditions

From (23) att = 0, Q = Q0 andq = q0, one obtains

sn(ccc, κ) = ±
√

η
Q0 − E1

Q0 − E2
,

cn(ccc, κ) = ±
√

(1 − η)Q0 + (ηE1 − E2)

Q0 − E2
,

dn(ccc, κ) =
√

(1 − κ2η)Q0 + (κ2ηE1 − E2)

Q0 − E2
.

(25)

Therefore, from (12), (16) and (19) one gets

ξi = ξi(q0, Q0), (i = 1, 2, 3),

η = η(q0, Q0), χ = χ(q0, Q0), κ = κ(q0, Q0).

Equations (25) may now be used in the addition theorem for elliptic functions

sn(χt +ccc, κ) = sn(χt, κ)cn(ccc, κ)dn(ccc, κ) + cn(χt, κ)sn(ccc, κ)dn(χt, κ)

1 − κ2sn2(χt, κ)sn2(ccc, κ)
,(26)

to yield

V (q0, Q0, t) ≡ sn2(χt + ccc, κ)

= {[(1 − η)Q0 + (ηE1 − E2)][(1 − ηκ2)Q0 +
+ (κ2ηE1 − E2)] · sn2(χt, κ) + η(Q0 − E1)(Q0 − E2) ×
× cn2(χt, κ) · dn2(χt, κ) ± 2sn(χt, κ) · cn(χt, κ) ×
× dn(χt, κ) · [η(Q0 − E1)(Q0 − E2)((1 − η)Q0 +
+ (ηE1 − E2))((1 − ηκ2)Q0 + (κ2ηE1 − E2))]

1/2}
/((Q0 − E2)

2 + κ4η2 · sn4(χt, κ) · (Q0 − E1)
2 −

− 2κ2η(Q0 − E1)(Q0 − E2) · sn2(χt, κ)). (27)

Thus,Q andq may finally be given in terms ofQ0, q0 andt as

Q(q0, Q0, t) = E2V (q0, Q0, t) − E1η

V (q0, Q0, t) − η
, (28a)

q(q0, Q0, t)= 1

m
arccos

[
A1(Q0 − Q) + A2(Q

2
0 − Q2) + A3R(Q0) cosmq0

A3R(Q)

]
,

(28b)
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which are the closed form solutions of the normalized system. In (11), the quantity
under the square root sign should be positive. Thus, 06 Q 6 P −G is the allowable
region of the phase space for the motion.

Caranicolas [3] has considered

H =H0 + H 1(Q, q) = d1Q(d2 − Q)(1
2 + cos 2q), d1, d2 = constant. (29)

This is the averaged Hamiltonian of a two-dimensional perturbed harmonic oscillator.
Equation (29) is a special case of (12). Thus, his regular solutions may be obtained
as a special case of (28).

5. Periodic Orbits

The fixed points of (14) can represent periodic motions. These points are found by
solving

A1 + 2A2Q + A3
dR(Q)

d(Q)
cos 2q = 0, (30)

for Q with q = 0, π/2, π, 3π/2. Denote them by(qj , Qj ). Correspondingly let
Lj = P − Qj , Kj = Qj andkj = qj + l. For the motion associated with thej th
fixed point, one readily finds from (7)

dg

dl
= dg

dt

/
dl

dt
= �̃ + εf1(l)

ω̃ + εf2(l)
∼= �̃

ω̃
+ ε

1

ω̃

[
f1(l) − �̃

ω̃
f2(l)

]
, (31)

with

�̃ = � + ε


 α

4ω2
G + β

4ωλ

KjG√
L2

j − G2
cos 2qj


 , (32a)

ω̃ = ω − ε


 3α

4ω2
Lj + β

2ωλ
Kj + β

4ωλ

KjLj√
L2

j − G2
cos 2qj


 , (32b)

f1(l) = ∂H
(l)
1 (Lj , Kj , kj )

∂G
, f2(l) = ∂H

(l)
1 (Lj , Kj , kj )

∂L
, (32c)

where H
(l)
1 is the collection of those terms of (7b) that contain cosines of

2k, 4k, 2l, 4l and (2k + 2l). These are the terms that in the integration of dg/dl
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don’t contribute to secular terms inl. Thus,

H
(l)
1 = 1

2λ

(
β

ω
L + γ

λ
K

)
K cos 2k − γ

8λ2
K2 cos 4k +

+ 1

2ω

(
α

ω
L + β

λ
K

) √
L2 − G2 cos 2l − α

8ω2
(L2 − G2) cos 4l −

− β

4ωλ
K

√
L2 − G2 cos(2k + 2l). (33)

Integrating (31) gives

g = �̃

ω̃
l + ε

1

ω̃

[
g1(l) − �̃

ω̃
g2(l)

]
, (34)

where

g1(l) =
∫ l

0
f1(u) du, g2(l) =

∫ l

0
f2(u) du.

The functionsg1(l) andg2(l) are 2π -periodic inl. Thus, according to (4), (5) and
(34), the system undergoes periodic motion inl if �̃/ω̃ is rational. In order to visualize
the shapes of the orbits, we use polar(r, θ, z) coordinates. Any orbit associated with
the fixed points of (14) lies on a surface of revolution with the parametric equations

∑
:




r =
√

1

ω
[Lj − (L2

j − G2)1/2 cos 2l],

θ ∈ [0, 2π [,

z =
(

2Kj

λ

)1/2

sin(qj + l),

l ∈ [0, 2π [.

(35)

Depending on the values ofqj ’s, two general types of periodic and quasi-periodic
orbits emerge. Type I corresponds toqj = 0, π for which 6 is a hyperboloid of
one sheet, Figure 1(a). Type II is forqj = π/2, 3π/2. In this case,6 is a spheroidal
surface, Figure 1(b), conformant with the shape of the galaxy. Neither the hyperboloid
nor the spheroid are complete. They are confined to surfacesz = ±(2Kj/λ)1/2. For
irrational�̃/ω̃, the orbits will be quasi-periodic and dense on6. Such classification
of orbits is not altered if one continues the normalization of the Hamiltonian up to the
second order inε. The origin of the two-dimensional phase space of the normalized
system is the trivial fixed point associated with equatorial motions. The nature of this
point plays an important role in the stability of oblate and prolate galaxies which is
the subject of the next section.
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Figure 1a Figure 1b

6. Local Stability

In order to investigate the stability of equatorial motions, we introduce a canonical
change of variables as follows

Q = 1

2
(ξ2 + η2), q = arctan

ξ

η
. (36)

Equations (14) transform to

ξ̇ = A1η + A2η(ξ2 + η2) + A3ηR1(ξ, η) + 1
2A3ηR2(ξ, η), (37a)

η̇ = −A1ξ − A2ξ(ξ2 + η2) + A3ξR1(ξ, η) + 1
2A3ξR2(ξ, η), (37b)

with

R1(ξ, η) = [
(P 2 − 1

2ξ2 − 1
2η2)2 − G2

]1/2
,

R2(ξ, η) = 1

R1(ξ, η)
(η2 − ξ2)

(
P − 1

2
ξ2 − 1

2
η2

)
.

Linearizing (37) about the origin,(ξ = η = 0), gives

ξ̇ =
(
A1 + A3

√
P 2 − G2

)
η, (38a)

η̇ =
(
−A1 + A3

√
P 2 − G2

)
ξ. (38b)

Correspondingly, the characteristic equation becomes

w2 − 1 = 0, 1 = A2
3(P

2 − G2) − A2
1. (39)
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The origin is a center if1 < 0 (stable equatorial motions) and a saddle if1 > 0
(unstable equatorial motions). By combining these conditions withG2 < P 2 (this is
a direct result of (6) and (8)), the following conditions are obtained

f (P, e) > 0 ⇒
{
1 > 0 if G2 < f (P, e) < P 2,

1 < 0 if f (P, e) < G2 < P 2,
(40a)

f (P, e) < 0 ⇒ 1 < 0, (40b)

where

f (P, e) = (c2P
2 − 2c1P − c01)/c02,

c01 = 16µ2ω4λ4, c02 = β2ω2λ2, c1 = 4µ(3αω2λ4 − 2βω3λ3),

c2 = 12αβωλ3 − 9α2λ4 − 3β2ω2λ2.

The analytical results of this paper are reliable forP < 1 and 0 < e < 0.6.
Outside this range of the parameters, perturbation approximation and closeness to
1:1 resonance break down. We have calculatedf (P, e) in this range of validity
and plotted in Figures 2(a) and 2(b) for prolate and oblate galaxies, respectively.
The origin of the averaged system can become a saddle point in prolate galaxies
(Figure 2(a)) indicating unstable equatorial motions. In oblate galaxies, however, the
origin remains a center leading to stable equatorial motions.

Figure 2a.Variations off (P, e) in prolate galaxies.
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Figure 2b.Variations off (P, e) in oblate galaxies.

7. Examples

We have used the formalism developed in this paper to study the orbits fore2 = 0.19.
The constant parametersω, λ, α, β, andγ are calculated from (2) and are given in
Table I. For motions withP = 0.6 and for several choices ofG and initial conditions,
we have calculatedZ = (2Q)1/2 cosq andz = (2Q)1/2 sin q and plotted them in
Figures 3 and 4. All flows are confined to circles of radiusR0 = (2P − 2G)1/2.
Center-type fixed points exist in both oblate and prolate spheroids. They indicate
stable periodic or quasi-periodic solutions. The origin itself stands for equatorial
motions. In the prolate system and for certain values of the angular momentum,
the origin is a saddle point. This implies that the equatorial motions of the prolate
spheroid are unstable and are subject to appreciable levitation in thez-direction.
Periodic and quasi-periodic orbits of Type II and their surrounding tubes, exist in
both the oblate and prolate systems. Orbits of Type I are to be found only in the
prolate spheroid.

TABLE I

Numerical values for the constant coefficients appearing in the original Hamilto-
nian fore2 = 0.19.

e2 Shape ω λ α β γ

0.19 Oblate 0.242334 0.258052 0.006776 0.007865 0.009147

0.19 Prolate 0.266440 0.250022 0.009872 0.008480 0.007298
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Figure 3a.The phase portrait of the normalized Hamiltonian for an oblate spheroid withe2 = 0.19,
P = 0.6 andG = 0.2.

Figure 3b.The phase portrait of the normalized Hamiltonian for an oblate spheroid withe2 = 0.19,
P = 0.6 andG = 0.5.
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Figure 4a.The phase portrait of the normalized Hamiltonian for a prolate spheroid withe2 = 0.19,
P = 0.6 andG = 0.2.

Figure 4b.The phase portrait of the normalized Hamiltonian for a prolate spheroid withe2 = 0.19,
P = 0.6 andG = 0.5.
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8. Discussion

This research was motivated by the work of Davoust [8]. The model presents motions
in spheroidal galaxies with quadratic density distributions:

(a) By the Lissajous transformation of Deprit [11] and a transformation to action
angle variables, the Hamiltonian is written in a form amenable to standard
perturbation techniques.

(b) By a transformation to a rotating coordinate system the Hamiltonian is split into
terms containing slowly and rapidly varying angles.

(c) The fast angle is averaged out by a Lie transformation and a normalized Hamil-
tonian with one degree of freedom is obtained.

(d) Finally, after some algebraic manipulations, the normalized system is integrated
in terms of Jacobi’s elliptic functions. Jacobi’s functions are doubly periodic and
have most of the useful properties of trigonometric functions such as addition
rules, the double angle formulae, etc. These features permit one to express the
solutions explicitly in terms of the initial conditions and time.

Davoust [8] studied the existence of periodic orbits at exact resonances for rational
values ofω/λ. The formalism adopted in this paper allows us to consider irrational
ω/λ as well.

Chaotic motions theoretically occur in the vicinity of the saddle points of the
averaged system. Thus, according to the results of Section 6, chaotic orbits can
emerge in prolate galaxies. On the evidence of Figure (2), oblate galaxies are more
stable than prolate ones, an intuitively expected feature, for, prolate galaxies are
exceptional occurrences.

Similarities exist between the findings of this paper and those of separable mod-
els. According to Sẗackel’s theorem, the Hamilton–Jacobi equation is separated in
elliptical coordinates for Hamiltonians of the form (de Zeeuw, [15])

H = 1
2(f −2

u p2
u + f −2

v p2
v + f −2

w p2
w) + 8(u, v, w),

8(u, v, w) = − f (u)

(u − v)(u − w)
− f (v)

(v − w)(v − u)
− f (w)

(w − u)(w − v)
,

wheref is an arbitrary function andf −2
u , f −2

v andf −2
w are functions ofu, v and

w (see also [16]). In such systems four types of orbits emerge:boxes, short axis
tubes, outer long axis tubesandinner long axis tubes. Although the system (1) is not
separable, it has similar types of orbits. Inner and outer long axis tubes of de Zeeuw
are similar to our Type I and Type II orbits of prolate spheroids, respectively. Short
axis tubes of de Zeeuw are the analogs of our Type II orbits for oblate spheroids.
Closed curves in the phase portrait of the averaged system (Figures 3 and 4) which
encircle the origin, are associated with box type orbits as seen in thex-z andy-z
planes. However, they form tubes in thex-y plane, forG is constant and does not
reverse sign during the motion.
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