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ABSTRACT

Rotation curves of spiral galaxies i) fall off much less steeply than the Keplerian curves do; and ii) have asymptotic speeds almost
proportional to the fourth root of the mass of the galaxy, the Tully-Fisher relation. These features alone are sufficient for assigning
a dark companion to the galaxy in an unambiguous way. In regions outside a spherical system, we design a spherically symmetric
spacetime to accommodate these peculiarities. Gravitation emerges in excess of what the observable matter can produce. We attribute
the excess gravitation to a hypothetical, dark, perfect fluid companion to the galaxy and resort to the Tully-Fisher relation to deduce
its density and pressure. The dark density turns out to be proportional to the square root of the mass of the galaxy and to fall off as
r−(2+α), α � 1. The dark equation of state is barrotropic. For the interior of the configuration, we require the continuity of the total
force field at the boundary of the system. This enables us to determine the size and the distribution of the interior dark density and
pressure in terms of the structure of the observable matter. The formalism is nonlocal and nonlinear, and the density and pressure of
the dark matter at any spacetime point turn out to depend on certain integrals of the baryonic matter over all or parts of the system in
a nonlinear manner.
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1. Introduction

Gravitation of the observable matter in galaxies and clusters of
galaxies is not sufficient for explaining their dynamics. Dark
matter scenarios and/or alternative theories of gravitation (see
e. g., Milgrom 1983; Behar & Carmelli 2000; Capozziello et al.
2002, 2003, 2006; Carroll et al. 2004; Norjiri et al. 2003, 2004;
Moffat 2005; Sobouti 2007) are called in to resolve the dilemma.
The fact remains, however, that the proponents of dark matter
have always looked for it in observable matter. No one has, so
far, reported a case where there is still no baryonic matter, but
there is a dynamical issue to be settled. In view of this nega-
tive observation, it has been conjectured (Sobouti 2008a,b, 2009)
that, if there is a dark companion to any baryonic matter, there
must be rules to connect the properties of the twin entities. On
the other hand, the existence of such a rule will entitle one to
interpret the case as an alternative gravity, thus reducing the dif-
ference between the two paradigms to the level of semantics.
This conclusion, however, is true as long as the assumed dark
matter does not interact with the baryonic one in any other way
than through its gravitation.

Sobouti assumes a spherically symmetric system, attributes a
dark perfect fluid companion to it, and requires the rotation curve
of the system to display the same asymptotic behavior as those of
the actual spirals. The reason for the assumption of a dark fluid
instead of the conventionally assumed dark pressureless dust, is
to ensure the satisfaction of the Bianchi identities and thereby the
baryonic conservation laws (see Sect. 8 for further explanation).

In regions outside the baryonic system, he finds the density
and pressure of the dark fluid companion in terms of the mass
of the host system. The Tully-Fisher relation and the slow non-
Keplerian decline of the rotation curves play key roles in deter-
mining the relation between the matter and its dark twin.

In this paper, we follow the same line of argument to find the
structure of the dark matter in the interior of the baryonic system.
The continuity of the total gravitational force at the boundary of

the observable matter leads to the dark matter distribution in the
interior. The Tully-Fisher relation is a nonlocal and nonlinear
feature of the dynamics of galaxies: a) The presence of the total
or partial integrals of the baryonic matter in the structure of both
exterior and interior solutions reflects the nonlocality; b) That
the excess gravitation does not increase proportionally upon in-
creasing the mass of the host galaxy indicates the nonlinearity.
To emphasize these two features, we refer to the formalism de-
veloped here as the nonlocal and nonlinear (NN) one.

To check its validity, the formalism is applied to NGC 2903
and NGC 1560, two examples of high and low surface bright-
ness galaxies, respectively, and the resulting rotation curves are
compared with those obtained through other approaches.

2. Model and formalism

The following is a brief background from Sobouti (2008a,b,
2009). The physical system is a spherically symmetric baryonic
matter of finite extent. By conjecture there is a dark presence
that pervades both the interior and exterior of the system. The
spacetime metric inside and outside of the system is necessarily
spherically symmetric and takes the form

ds2 = −B(r)dt2 + A(r)dr2 + r2
(
dθ2 + sin2 θdϕ2

)
. (1)

Let both the baryonic matter and its dark companion be perfect
fluids of densities ρ, ρd, of pressures p, pd, respectively, and be
at rest. From the field equations of general relativity (GR), we
find

1
r2

[
d
dr

( r
A

)
− 1

]
= −(ρ + ρd),

1
rA

(
B′

B
+

A′

A

)
= [(p + pd) + (ρ + ρd)], (2)

where we have let 8πG = c2 = 1, and ‘′’= d/dr. In the nonrela-
tivistic regime, we neglect the pressures, eliminate the densities
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between the two equations, and arrive at

B′

B
=

1
r

(A − 1). (3)

In the following two sections we solve Eqs. (2)–(3) inside and
outside the baryonic system.

3. Exterior solution

Hereafter, the parameters pertaining to the interior and exterior
of the system will be labeled by the superscripts (i) and (e), re-
spectively. The unknowns in Eqs. ((2)–(3)) are A, B, ρd, pd, and
the dark equation of state. We begin with Eq. (3) and assume that
in the baryonic vacuum, ρ = p = 0, the factor (A(e) − 1) is differ-
entiable and has the series expansion

(A(e) − 1) =
( r0

r

)α (
s0 +

s1

r
+ · · ·

)
, r ≥ R, (4)

where the indicial exponent α and s0 are dimensionless, s1 has
the dimension of length, r0 is an arbitrary length scale of the
system, and R is the radius of the baryonic sphere. Substituting
Eq. (4) into Eq. (3) and integrating the resulting expression,
gives

B(e) = exp

[
−

( r0

r

)α ( s0

α
+

s1

(1 + α)r
+ · · ·

)]
. (5)

We expand the exponential factor, keep its first two terms, and
for the weak field gravitational potential, φ = (B − 1)/2, find

φ(e) = −1
2

(r0

r

)α [ s0

α
+

s1

(1 + α)r
+ · · ·

]
. (6)

The square of the circular speed of a test object orbiting the
galaxy is

v2 = r
dφ(e)

dr
=

1
2

( r0

r

)α (
s0 +

s1

r
+ · · ·

)
. (7)

Equation (7) is the rotation curve of our hypothetical galaxy in its
baryonic vacuum. It has an asymptotically constant logarithmic
slope,

Δ = d ln v2/d ln r → −α as r → ∞.

3.1. Determination of α, s0, s1, · · ·
Rotation curves of actual spiral galaxies have two distinct non-
classical features:

i) Their asymptotic slopes are much flatter than that of the
Keplerian curves,−1, (Sanders 1996; Bosma 1981; Begmann
1989; Persic & Salucci 1995; Begmann et al. 1991; Sanders
& Verheijen 1998; Sanders & McGhaugh 2002). This im-
plies α� 1. From Persic et al. 1996, who study 1100 galax-
ies with the aim of arriving at a universal rotation curve, we
estimate

α < 0.01. (8)

Moreover, α does not seem to be a universal constant. The
rotation curves of more massive galaxies appear to fall off
somewhat more steeply than those of the less massive ones
(Persic et al. 1996). Hereafter, for simplicity but mainly for
pedagogical reasons, we work in the limit of α→ 0.

ii) Their asymptotic speeds follow the Tully-Fisher relation.
They are almost proportional to the fourth root of the mass
of the host galaxy (Tully & Fisher 1977; Begmann 1989;
McGaugh et al. 2000; McGhaugh 2005). In Eq. (7), letting
α→ 0, the dominant term at large distances is v2 = s0/2. We
identify this v with the Tully-Fisher asymptote and conclude
that

s0 = λ (M/M�)1/2 , λ = 2.8 × 10−12, (9)

where M is the galactic mass, and λ can be obtained either
from a direct examination of the observed asymptotic speeds
(Sobouti 2007) or from a comparison of the first term of
Eq. (7) with the low acceleration limit of MOND (Milgrom
1983): v2/r → (a0gN)1/2, a0 = 1.2 × 10−10 m s−2 (Begmann
1989).

Again letting α → 0, the second term in Eq. (7) is the classic
Newtonian or GR term. Therefore, s1 should be identified with
the Schwarzschild radius of the host galaxy:

s1 = 2GM/c2. (10)

Here, for clarity, we have restored the constants c2 and G and
written s1 in physical units. There is no compelling observational
evidence to indicate the need for other terms in Eqs. (4)–(7).
Therefore, at least at the present state of the extent and accuracy
of the observational data, we truncate the series at the s1 term.

4. Interior solution

The first and foremost condition to be satisfied is the continuity
of the total force exerted on a test object at the boundary, R, of the
baryonic system. Pressure forces are anticipated to be insignif-
icant in the present problem so are ignored. These gravitational
forces remain. From Eqs. (7)–(10), the exterior force is

dφ(e)

dr
=

1
2

⎡⎢⎢⎢⎢⎢⎣λ
(

M
M�

)1/2 1
r
+

2GM
c2

1
r2

⎤⎥⎥⎥⎥⎥⎦ , r ≥ R. (11)

By analogy, for the interior of the system we adopt

dφ(i)

dr
=

1
2

⎡⎢⎢⎢⎢⎢⎣λ
(

M(r)
M�

)1/2 1
r
+

2GM(r)
c2

1
r2

⎤⎥⎥⎥⎥⎥⎦ , r ≤ R, (12)

where M(r) = 4π
∫ r

0
ρr2dr is the variable baryonic mass inside

the radius r. The continuity of the exterior and interior forces at
the boundary is evident, QED. Once the baryonic ρ(r) and M(r)
are known, φ(i)(r), Bi(r) ≈ 1 + 2φ(i) and A(i) can be integrated.
The expression for the latter is much simpler and is given below
for later reference. From Eq. (3) we find

A(i) − 1 = 2r
dφ(i)

dr
=

⎡⎢⎢⎢⎢⎢⎣λ
(

M(r)
M�

)1/2

+
2GM(r)

c2

1
r

⎤⎥⎥⎥⎥⎥⎦ · (13)

This has the same form as Eq. (4), where M is replaced by M(r).

5. Structure of the dark matter

The densities are obtained from Eq. (2) or equivalently from
Poisson’s equation through Eqs. (11)–(12). For the exterior dark
density we find

ρ(e)
d (r) = λ

(
M
M�

)1/2 1
r2
, r ≥ R. (14)
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Note the square root dependence on the mass of the galaxy and
the fall out as r−2. For the interior, A(i) is given by Eq. (13),
whose first term gives the interior dark density and the second
renders the baryonic density, ρ. Thus,

ρ(i)
d (r) = λ

[
M(r)
M�

]1/2 1
r2

[
1 + 2π

ρr3

M(r)

]
, r ≤ R. (15)

The dark matter inside the radius r is

Md(r) = 4π
∫ r

0
ρd(r)r2dr = λ

[
M(r)
M�

]1/2

r. (16)

Equation (16) holds for any r. For r ≥ R, however, M(r) attains
its maximum constant value, M, and Md(r > R) becomes pro-
portional to r.

It is instructive to look at the behavior of Eq. (15) in the
neighborhood of the origin, where ρ → ρc and M(r) →
4πρcr3/3. Equation (15) tends toward

ρ(i)
d (r → 0) =

5
2
λ

(
4π
3
ρc

M�
)1/2

r−1/2. (17)

Similarly,

M(i)
d (r → 0) = λ

(
4π
3
ρc

M�

)1/2

r5/2. (18)

While the density becomes singular as r → 0, no cusp develops.
For the measure r2dr tends to zero as r → 0.

Pressures of the matter and of its dark companion are ob-
tained from their hydrostatic equilibrium, a requirement of the
Bianchi identities. The general formula is

p′

p + ρ
≈ p′

ρ
= −1

2
B′

B
≈ −dφ

dr
· (19)

For the exterior pressure from Eqs. (19), (14), (11), we find

p(e)
d (r) =

1
4

s0

(
s0

r2
+

2
3

s1

r3

)
, r ≥ R. (20)

The presence of an extra factor of s0 in Eq. (20) makes the pres-
sure an order of magnitude less than the density and justifies the
approximation made in the derivation of Eq. (3) and thereafter.
The equation of state, p(ρ), in the exterior region is obtained by
eliminating r between Eqs. (20) and (14). It is barrotropic. The
internal pressure is obtained in a similar way. It is, however, too
involved expression to give here.

A pedagogical note: Throughout the text, except in Eq. (10),
we have chosen 8πG = c2 = 1. To write the results in physical
units, the rule is to multiply, everywhere, the potentials, φ, by c2,
the dark densities, ρd, dark masses, Md, by c2/8πG, and the dark
pressures, pd, by c4/8πG.

6. Application to actual spirals

Spiral galaxies are flattened objects. Their approximation as
spherical systems introduces an error on the order of (Rgyr/r)2,
where Rgyr(r) is the gyration radius of the mass enclosed within
a radius r. In a flat system that thins out as an exponential or as
a Kuzmin disk, say, this ratio would be a few parts in thousand
and small enough for our purpose. This is also the practice of all
the authors quoted so far in this paper. To illustrate the practical
applicability of the formalism developed here, we construct the
rotation curves of two standard high- and low-surface brightness

Fig. 1. Points with error bars are observed data. Dotted and dashed lines
are the contributions of the gaseous and stellar components to the rota-
tion curves, respectively. Dashed-dotted line is the rotation curve con-
structed through MOND’s formalism. Solid line is our rotation curve
calculated from Eq. (12). The free parameter in matching theoretical
curves to data points, is the stellar mass-to-light ratio.

galaxies and compare the results with those obtained through
MOND’s formalism.

NGC 2903 is a textbook example of a high surface brightness
spiral. It has a large stellar component and small HI content.
The gas is confined to the galactic plane and follows circular
orbits. It is well observed out to about 40 kpc (Begmann 1989).
In contrast, NGC 1560 is a low surface brightness spiral with a
dominant gas component. Its observed rotation curve extends out
to about 8 kpc and does not seem to have reached its asymptotic
regime.

In Fig. 1 we construct the rotation curves of our NN formal-
ism from Eq. (12), in which M(r) is the total, stellar plus HI,
mass interior to r. The free adjustable parameter in matching the
theoretical curves to data points, is the “stellar” mass-to-light ra-
tio, Υ, assumed to be constant throughout the galaxy. For com-
parison we have also included the rotation curves of MOND.
That the NN curves trace the data points more closely than the
MOND ones can be seen pictorially. The χ2 test and Υ’s of
Table 1, however, illustrate this in a quantitative way. In both
galaxies our χ2

NN is noticeably small. Significant, however, is the
low stellar mass-to-light ratio of the young and gas-dominated
NGC 1560. Our Υ = 0.3 is, by far, closer to 0.4 estimate of
McGaugh (2002) than to 1.1 of MOND.

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/200912571&pdf_id=1
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Table 1. Minimum χ2 and fitted stellar mass-to-light ratio,Υ, of MOND
and of our NN formalism.

Galaxy χ2
NN ΥNN χ2

MOND ΥMOND

NGC 2903 4.97 1.7 6.07 3.0
NGC 1560 1.52 0.3 3.35 1.1

Our next project is to study pressure-supported systems,
globular clusters and dwarf spheroidal galaxies (dSph). Globular
clusters are commonly believed to be almost Newtonian sys-
tems, while dSph’s show significant deviations from Newtonian
regimes. The low baryonic mass and extremely high dynamical-
mass-to-light ratio of dSph’s are inconsistent with population
synthesis models (Hilker 2006; Jordi et al. 2009; Angus 2008).
Our approach is to find a counterpart of the classical virial the-
orem for our proposed gravity and to solve a modified Jeans
equation. The aim is to verify whether the velocity dispersions
obtained via Jeans equation fit the observed data. We also hope
to be able to come up with a notion equivalent to the funda-
mental plane for galaxies where one arranges the galaxies on a
two-parameter-plane in a three-dimensional space of luminosity,
velocity dispersion, and some other global characteristics of the
galaxies.

7. Nonlocality and nonlinearity of the formalism

The masses M and M(r) are integrals over all or parts of the sys-
tem. Their presence, in the structure of the spacetime metric, in
the rotation curve, in the expressions for the dark densities and
pressures, etc., reflects the nonlocal nature of the theory. That
these integrals enter the formalism not in a linear way indicates
the nonlinearity of it. Both features are rooted in the Tully-Fisher
relation, which requires the dynamical variables at one space-
time point to depend on the integral properties of the whole or
parts of the system through the square root of these integrals.
Any attempt to derive the spacetime metric entertained in this
paper through a variational principle should take these two fea-
tures into account.

In this respect, Hehl and Mashhoon’s generalization of GR,
(Hehl & Mashhoon 2009a,b), constructed within the framework
of the translational gauge theory of gravity, is interesting. In the
weak field approximation, the excess gravitation coming from
the nonlocality of their theory can be interpreted as a dark com-
panion to the baryonic matter. In the case of a point baryonic
mass, M, the dark density has the expected r−2 distribution, But
it does not obey the Tully-Fisher relation. Instead of M1/2, it is
proportional to M itself.

8. Concluding remarks
The formalism developed here is a dark matter scenario or,
equivalently, a modified GR paradigm to understand the non-
classical behavior of the rotation curves of spiral galaxies.
Following (Sobouti 2008a,b, 2009), we attribute a hypothetical
dark perfect fluid companion to our model galaxy, and find the
size and the distribution of the companion by comparing the
rotation curve of the model with those of the actual galaxies.
However, as long as the dark companion displays no physical
characteristics other than its gravitation, one has the option to in-
terpret the scenario as an alternative theory of gravitation. Here,
for example, one may maintain that the gravitation of a baryonic
sphere is not what Newton or Schwarzschild profess, but rather
what one infers from the spacetime metric detailed above. In
fact we wish to emphasize that any modified gravity is express-
ible in terms of a dark matter scenario. And vice versa, any dark

matter paradigm, in which the matter and its dark twin are re-
lated by certain rules, is explainable by a modified gravity. The
difference between the two alternatives is semantic.

Dynamics of galaxies is a nonrelativistic issue. Yet, its anal-
ysis in a GR context answers questions that otherwise are left
out. In particular, in a nonrelativistic scenario, there is neither
need nor logic to assign a pressure field to a hypothetical mat-
ter that one knows nothing about its nature. In a GR context, on
the other hand, the dark matter has to have a pressure field and
has to be in hydrodynamic equilibrium as a requirement of the
Bianchi identities and thereby of the conservation laws of the
baryonic matter, i.e. the vanishing of the 4-divergence of both
sides of the field equations. Let us also note in passing that all
those metric approaches that attempt to explain the galaxy prob-
lems with the aid of a single scalar field are subject to the same
criticism, namely the violation of the Bianchi identities and of
the conservation laws.

Regions outside to the baryonic matter are not dark matter
vacua. Therefore, the Ricci scalar does not vanish, and there are
excess lensing and excess periastron precession caused by the
dark matter. These are analyzed in Sobouti (2008a,b, 2009).

The formalism is good for spherical distributions of baryonic
matters. An axiomatic generalization to nonspherical configura-
tions or to many body systems requires further deliberations and
more accurate observational data to help find some solutions.
One might need other postulates not contemplated. The difficulty
lies in the nonlinearity of the formalism. There is no superposi-
tion principle. One may not add the fields of the dark compan-
ions of two separate baryonic systems because s0 of Eq. (9) is
not linear in M or M(r).
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