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Localized solutions of the linearized gravitational field
equations in free space
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Abstract, We consider the eguations of general relativity in free space in the linear
appreximation. Non-stationary moving solutions for these equations, which are localized and
have finite energy, are explicitly constructed. The energy of the localized wave is shown to be
proportional to its internal frequency and can represent a massive quantum particle ‘made’ of
gravitational energy.

PACS numbers; 0425N, Q430N

1. Introduction

Recently, moving localized solutions of massless scalar and electromagnetic fields were
constructed [1,2]. These solutions, called wavelets, move without spreading with a
dispersion relation corresponding to that of a ‘massive’ quantum particle with group velocity
v and phase velocity w satisfying uv = ¢2. The wavelet is characterized by an internal
frequency §2 such that its central peak is within a distance ¢/ £2 and the corresponding mass
is RS2 /c. For a single sharp frequency Qp the wavelet is stable, However, to have a finite
total energy a frequency distribution f(£2) around £ of width A must be taken, In this
case the lifetime of the state is of the order of 1/A. The integrated energy and momentum
are proportional to the frequency and wavenumber of the moving solution, respectively.

These solutions have been interpreted in a ‘quantum theory of single events’§ in such a
way that the standard quantum mechanics emerges after averaging over the wavelets with
different initial conditions. Furthermore, for £2 — oo, the wavelets degenerate into moving
delta functions, and we obtain as a consequence a limit to classical mechanics.

The purpose of this paper is to explicitly construct the wavelet solutions for the linearized
gravitational field equations.

2. Field equations

In the linear approximation to general relativity one expresses the metric g,, as gy =
Nuv + Ay, where ny, is the Minkowski metricf with signature (1, —1, —1, —1, ~1) and £,
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§ For a review see [3].
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is a comrection, Likewise we have that g#¥ = g*¥ — p#*_ In this approximation Einstein’s
equations of general relativity become [5]

- - - 8k

where T,z is the energy-momentum tensor, & is the universal constant of gravitation, and

hag is defined as

brag = Hag — 3Nap @
with k¥ = k. Note that we can invert this last relation as follows

Bog = hag — Lnagh (3

with A% = k.
Let us now transform the metric as follows

haﬂ —* ha,B + 3&‘5,8 + aﬁ‘Ea . 4}

The new metric is equivalent to the original if the vector field &, generates an infinitesimal
diffeomorphism in the spacetime [4].
Under this transformation we have

Eaﬁ — Eaﬂ = 5&5 + 3,3'9‘0: + a’a?ﬁ - naﬂasgﬁ 53]
and
3Bhoy = 8P Rgp + 0P gk, . (6)

Choosing &, such that 058Pk, = —8Ph,p one obtains 3ﬂ;¢\-ﬂ = 0. Therefore assuming
that Qﬁhqﬁ = (, Einstein’s equations become, with T,,, = 0, the free space wave equation
%0, hpy .

3. Localized solutions

The localized solutions are first constructed in the rest frame of the lump at some point
xp of the space. The solution in an arbitrary inertial frame will be obtained by a Lorentz
transformation.

We shall assume that #'® = 4% = 0 and that 2%, 2%, h30, %33 are the only non-zero
components. Thus, we have the melric tensors

% h%
- ) {7
he B3

1R — k) A
Yy = . 8)

i3 —1(h% — h33)

(5)“1) o (
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Now we find solutions for the wave equation baving azimuthal symmetry. We assume the
following oscillatory form for the components of the metric

- -_ - i Q
=i = k;c&)Pg(cose)f]g(g)f(ﬂ)e“’1f?d9
(S)

P =ht= JLZ; copy Pa(cos ) f JHEYF(E) e'“"/; ds

where & = (Q/c)r and A is a constant with dimensions of time,/length. It is implicit in
the form of equation (9) that it refers to a particular inertial observer, namely, the one that
observes a non-moving <entre of localization, The metric F;a,g is dimensionaless and j; is a
Bessel function

je(8) = \/_§J£+1/2(€) (10)

These solutions are required to satisfy the gauge condition

i} 1 8 3
= - —h®+ — B*=0. 11
“=Tnt T an

Substitution into the gauge condition gives, after using the identities

£+ 1)
284+

d
(1—xl)aPe(I)=3P£-1(x)—<’ix.1’e(x)— {Pes — Pryi)

1
= — _ E+ 1P
xP; 2£+1{£Pt p4 (4 1) Py}

(12)
Je(x) = 2£+1{je —1(X) + Jer1(x)}
dje(x) 1 - :
= e —(£+1
p TS [€g-1(x) — (€ + 1) jer1(x)}
the expressions
13 -
= — B =1 iy g
c ot g
(13)
a - i@+ 1) L3
— 1% = IAc3 1 Poji + A ad - Pyj
PR L ;{ 2+1 2e—1) W@

where

2
Jo “f—Jr(E)f(ﬂ) C’“’\/;dﬂ.
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From these derivatives one obtains the recurrence relations

1.3 L0
3 Ticy =0

o £t 5 £t )
icy + ——¢ —-— =0
&) 20 4+3 (£+1) 22— 1 -1
for £ > 1. The simplest solutions of these equations are
R=rPjy B =ije (15)
and
R = i - 2Pjm} BP =P (16)
where now
. . s [S2
Jo= | @) (e s kel
i.e. without the factor £2/¢ inside the integral.
Thus our solution consists of
- Liljo—2Pja} P -
(R = A ( S o ) b= — 2niljo + Prja) an
P1j ijo
and
%i{z.fo — P j} Py ji
()" = A Lo . (18)
Pz jr 3i{2jo — Prja}

4, Energy of the localized solution

For the purpose of obtaining the energy of the localized solution let us compute the zero—
zero component of the energy-momentum pseudo-tensor for the gravitational field found
by Landau and Lifshitz [5].
In the linear approximation it becomes
ot

= 6k (R 0h™ gy~ B (B gyt G h™ R = 0 Nk P

too
- nmnmnkﬂn.phm‘y.l + !'J"pmmhm AR
+ 3@ = 0™V 2npgNgr — Npgtine Y™ 117 1} (19)

This expression was obtained by keeping only terms of first order in A,s and using

g = det (gap) = det (op + hag) = —1. (20)
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Now, setting 2% = 1* we obtain

ot

90—
32rk

{2 12+ (1% 5) — (0% )2 — (% 7. (21)

The following derivatives are needed to calculate the energy (with k = 1,2, 3}

2c K19
hm k= % I-——Z_](;) — (14 -Pz)ﬂk?‘ -+ J(z) (Pg )3, cos 8 + Pz.f(;-;) E Bkr]

Q 22 @
hm.k =A {J'(O) ;o Ot + jinydrcos8 — jpy 3 cosé a,fr} .
Recall that in these expressions
Q, Q. ; Q
~Jo= [ — i) f(Q) e’Q‘\/; de.
Since for our solution
4
E=[t°°d3x = 16chk h°3,1)2dx—f(h0°‘r)2dx} (23)
we just need
[0 s =2 {(Otoo +an) [ l@Pae
+ oy Jl]l\{ ff’ k-2 47 4o dey
. .. 182 ) /e
+ [ loojoiy + o1 sl — + — —_—
c c ¢
x ff el @, 4r do dszf} (24)

and

- f (h® ) d*x = A2 { (B11 + Bs3) f QF (D)2 dR

| gl gy IR Tty e 3T '
+Bn | hh Tff ¢ drdQdQ

[{ﬁzzjllz‘l‘ﬂzsjzjs}{ - } s

52

X ff @ dr dQdQY } (25)
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where
Qoy = 4_“‘ 0—’22 p— ._1_.@_.. o = _4.{1'_ gy = _._S_Jr_. o = S—N (26)
9x15 Q%15 915 615 3x15
and
8 % 287.557 o 8
U= T 420 n="3% =355 -
1087 127 )
b=~ 50 T T 25x63

In expressions (24) and (25} we have used the notations f = f(Q), ' = f(), i = ji(&),
Ji= qi&), etc.
Hence the total energy takes the final form

E =ftmd32

ch2

)
~ lénk l(“°°+°‘22+ﬁ11 +ﬁss)f91f(ﬂ)[2dg

T
+a11f——m 32 rpr @22 40 dor dr

Tep ! o
+ﬁnf ———’r 52 £ @R 40 40

2
f{a’m-ﬁ,‘z-fs/z + (2 + Br) s sy + Puatsppdy { ?}
x ff' @ qqaq dr} (28)
or, after integration of r from zero to infinity,
" alf@ide
16 2 1 |FCE2}"d
Qr\3/2 Q52 ) ’
+w f (2 — 2 (5) + (5) } Ff2Re (e~ a0 a5y’

+f6(Q g)fff Q-

o\ 112 Q\32 Q\2 Q\7/2 ’
X fap S'Z’ + ¥ 9; + Vi (Q’) -+ ﬁ23 (5) dsads2
(29)

which is our final result. Here

Y1 =g +an+ fin + B y2 = e + 1Bn
(30)

3=+ o+ B Va=ap+ bz + B,
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5. Concluding remarks

If the frequency function f(S2) is sufficiently localized, the second and third integrals in
equation {29) could be negligible and the energy of the ‘particle’ becomes proportional to the
average of the internal frequency. It is important to point out that without the superposition
with the frequency function f(£2), the energy of our solutions is infinite.

As in the case of electrodynamics and the massless scalar theories, when the frequency
approaches infinity the localized solution behaves like a point particle. Finally, in any
inertial frame the solution reads

Bolru, B) = A AY by (1) @31
where
rl=(0E =t ny = y(1,B)
ry ="+ B — 293 B )+ 2B DY (32)
F=%-a.
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