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Abstract The post-Newtonian approximation of general relativistic Liouville’s equation is pre-

sented. Two integrals of it, generalizations of the classical energy and angular momentum, are

obtained. Polytropic models are constructed as an application.

Key word:relativistic systems:static structures; methods: numerical

1 Introduction

Solutions of general relativistic Liouville’s equation (grl) in a prescribed space-time have been

considered by some investigators. Most authors have sought its solutions as functions of the

constants of motion, generated by Killing vectors of the space-time in question. See for example

Ehlers (1971), Ray and Zimmerman (1977), Mansouri and Rakei (1988), Ellis, Matraverse and

Treciokas (1983), Maharaj and Maartens (1985, 1987), Maharaj (1989), and Dehghani and

Rezania (1996).

In applications to self gravitating stars and stellar systems, however, one should combine

Einstein’s field equations and grl. The resulting nonlinear equations can be solved in certain

approximations. Two such methods are available; the post-Newtonian (pn) approximation and

the weak-field one. In this paper we adopt the first approach to study a self gravitating system

imbeded in an otherwise flat space-time. In sect. 2, we derive the grl in the pn approximation.

In sect. 3 we seek static solutions of the post-Newtonian Liouville’s equation (pnl). We find two

integrals of pnl that are the pn generalizations of the energy and angular momentum integrals

of the classical Liouville’s equation. Post-Newtonian polytropes, as simultaneous solutions of

pnl and Einsteins equation, are discussed and calculated in sect. 4. Section 5 is devoted to

concluding remarks.

The main objective of this paper, however, is to set the stage for the second paper in this

series (Sobouti and Rezania, 1998). There, we study a class of non static oscillatory solutions

of pnl, different from the conventional p and g modes of the system. They are associated with

oscillations in the space-time metric, without disturbing the classical equilibrium of the system.

In this respect they might be akin to the so called gravitational wave modes that some authors

have advocated to exist in relativistic systems. See, for example, Andersson, Kokkotas and

Schutz (1995), Baumgarte and Schmidt (1993), Detweiler and Lindblom (1983, 1985), Kojima

(1988), Kokkotas and Schutz (1986, 1992), Leaver (1985), Leins, Nollert and Soffel (1993),
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Lindblom, Mendell and Ipser (1997), and Nollert and Schmidt (1992).

2 Liouville’s equation in post-Newtonian approximation

The one particle distribution function of a gas of collisionless particles with identical masse m,

in the restricted seven dimensional phase space

P (m) : gµνU
µUν = −1 (1)

satisfies grl:

LUf = (Uµ ∂

∂xµ
− Γi

µνU
µUν ∂

∂U i
)f(xµ, U i) = 0, (2)

where (xµ, U i) is the set of configuration and velocity coordinates in P (m), f(xµ, U i) is a distri-

bution function, LU is Liouville’s operator in the (xµ, U i) coordinates, and Γi
µν are Christoffel’s

symbols. Greek indices run from 0 to 3 and Latin indices from 1 to 3. We use the convention

c = 1 except in numerical calculations of section 4. The four-velocity of the particle and its

classical velocity are related as

Uµ = U0vµ; vµ = (1, vi = dxi/dt), (3)

where U0(xµ, vi) is to be determined from Eq. (1). In the pn approximation, we need an

expansion of LU up to order v̄4, where v̄ is a typical Newtonian speed. To achieve this goal we

transform (xµ, U i) to (xµ, vi). Liouville’s operator transforms as

LU = U0vµ(
∂

∂xµ
+
∂vj

∂xµ

∂

∂vj
) − Γi

µνU
02

vµvν ∂v
j

∂U i

∂

∂vj
, (4)

where ∂vj/∂xµ and ∂vj/∂U i are determined from the inverse of the transformation matrix (see

appendix A). Thus,

∂vj

∂xµ
= −U

0

2Q
vj ∂gαβ

∂xµ
vαvβ, (5a)

∂vj

∂U i
=

1

Q
vj(g0i + gikv

k); for i 6= j,

(5b)

= − 1

Q
(U0−2

+
∑

k 6=i

vk(g0k + gklv
l)); for i = j,

where

Q = U0(g00 + g0lv
l). (5c)
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Using Eqs.(5) in Eq.(4), one finds

LUf = U0Lvf = 0, (6a)

or

Lvf(xµ, vi) = 0, (6b)

where

Lv = vµ(
∂

∂xµ
− U0

2Q
vj ∂gαβ

∂xµ
vαvβ ∂

∂vj
) − Γi

µνv
µvν{

∑

j 6=i

1

Q
vj(g0i + gikv

k)
∂

∂vj

− 1

Q
(U0−2

+
∑

k 6=i

vk(g0k + gklv
l))

∂

∂vi
}, (6c)

We note that the post-Newtonian hydrodynamic equations are obtained from integrations of Eq.

(6a) over the v-space rather than Eq. (6b) (see appendix B). We expand Lv up to the order

v̄4. For this purpose, we need expansions of Einstein’s field equations, the metric tensor, and

the affine connections up to various orders. Einstein’s field equation with harmonic coordinates

condition, gµνΓλ
µν = 0, yields (see Weinberg 1972):

∇2 2g00 = −8πG 0T 00, (7a)

∇2 4g00 =
∂2 2g00
∂t2

+ 2gij
∂2 2g00
∂xi∂xj

− (
∂ 2g00
∂xi

)(
∂ 2g00
∂xi

)

−8πG( 2T 00 − 2 2g00
0T 00 + 2T ii), (7b)

∇2 3gi0 = 16πG 1T i0, (7c)

∇2 2gij = −8πGδij
0T 00. (7d)

The symbols ngµν and nT µν denote the nth order terms in v̄ in the metric and in the energy-

momentum tensors, respectively. Solutions of these equations are

2g00 = −2φ, (8a)

2gij = −2δijφ, (8b)

3gi0 = ηi, (8c)

4g00 = −2φ2 − 2ψ, (8d)

where

φ(x, t) = −G
∫ 0T 00(x′, t)

|x− x′| d3x′, (9a)
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ηi(x, t) = −4G

∫ 1T i0(x′, t)

|x− x′| d
3x′, (9b)

ψ(x, t) = −
∫

d3x′

|x− x′|(
1

4π

∂2φ(x′, t)

∂t2
+G 2T 00(x′, t)

+G 2T ii(x′, t)), (9d)

where bold characters denote the three vectors. Substituting Eqs. (8) and (9) in (6c) gives

Lv = Lcl + Lpn

=
∂

∂t
+ vi ∂

∂xi
− ∂φ

∂xi

∂

∂vi

−[(4φ+ v2)
∂φ

∂xi
− ∂φ

∂xj
vivj − vi ∂φ

∂t
+
∂ψ

∂xi

+(
∂ηi

∂xj
− ∂ηj

∂xi
)vj +

∂ηi

∂t
]
∂

∂vi
(10)

where Lcl and Lpn are the classical Liouville operator and its post-Newtonian correction, re-

spectively. Equation (6b) for the distribution function f(xµ, vi) becomes

(Lcl + Lpn)f(xµ, vi) = 0. (11)

The three scalar and vector potentials φ,ψ and ηηη can now be given in terms of the distribution

function. The energy-momentum tensor in terms of f(xµ, U i) is

T µν(xλ) =

∫

UµUν

U0
f(xλ, U i)

√−gd3U, (12)

where g = det(gµν). For various orders of T µν one finds

0T 00(xλ) =

∫

f(xλ, vi)d3v, (13a)

2T 00(xλ) =

∫

(
1

2
v2 + φ(xλ))f(xλ, vi)d3v, (13b)

2T ij(xλ) =

∫

vivjf(xλ, vi)d3v, (13c)

1T 0i(xλ) =

∫

vif(xλ, vi)d3v. (13d)

Substituting Eqs. (13) in (9) gives

φ(x, t) = −G
∫

f(x′, t,v′)

|x − x′| dΓ′, (14a)

ηηη(x, t) = −4G

∫

v′f(x′, t,v′)

|x − x′| dΓ′ (14b)
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ψ(x, t) =
G

4π

∫

∂2f(x′′, t,v′′)/∂t2

|x− x′||x′ − x′′| d
3x′dΓ′′

−3

2
G

∫

v′2f(x′, t,v′)

|x − x′| dΓ′

+G2

∫

f(x′, t,v′)f(x′′, t,v′′)

|x − x′||x′ − x′′| dΓ′dΓ′′, (14c)

where dΓ = d3xd3v. Equations (11) and (14) complete the pn order of Liouville’s equation for

self gravitating systems imbeded in a flat space-time.

3 Integrals of post-Newtonian Liouville’s equation

In an equilibrium state f(x,v) is time-independent. Macroscopic velocities along with the vector

potential ηηη vanish. Equations (10) and (11) reduce to

(Lcl + Lpn)f(x,v) = [(vi ∂

∂xi
− ∂φ

∂xi

∂

∂vi
)

−(
∂φ

∂xi
(4φ+ v2) − ∂φ

∂xj
vivj +

∂ψ

∂xi
)
∂

∂vi
]f = 0, (15)

One easily verifies that the following, a generalization of the classical energy integral, is a solution

of Eq. (15)

E =
1

2
v2 + φ+ 2φ2 + ψ + const. (16)

Furthermore, if φ(x) and ψ(x) are spherically symmetric, which actually is the case for an

isolated system in an asymptotically flat space-time, the following generalization of angular

momentum are also integrals of Eq. (15)

li = εijkx
jvkexp(−φ), (17)

where εijk is the Levi-Cevita symbol. Static distribution functions maybe constructed as func-

tions of E and even functions of li. The reason for restriction to even functions of lpn
i is to insure

the vanishing of ηi, the condition for validity of Eq. (15).

4 Polytropes in post-Newtonian approximation

As in classical polytropes we consider the distribution function for a polytrope of index n as

Fn(E) =
αn

4π
√

2
(−E)n−3/2; for E < 0,

= 0 for E > 0, (18)
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where αn is a constant. By Eqs. (13) the corresponding orders of the energy-momentum tensor

are

0T 00
n = αnβn(−U)n, (19a)

2T 00
n = αnβnφ(−U)n + αnγn(−U)n+1, (19b)

2T ii
n = δij

2T ij = 2αnγn(−U)n+1, (19c)

1T 0i
n = 0, (19d)

where

βn =

∫ 1

0

(1 − η)n−3/2η1/2dη = Γ(3/2)Γ(n − 1/2)/Γ(n + 1), (20)

γn =

∫ 1

0

(1 − η)n−3/2η3/2dη = Γ(5/2)Γ(n − 1/2)/Γ(n + 2), (21)

and U = φ + 2φ2 + ψ is the gravitational potential in pn order. It will be chosen zero at the

surface of the stellar configuration. With this choice, the escape velocity ve =
√
−2U will mean

escape to the boundary of the system rather than to infinity. Einstein’s equations, Eqs. (7), (8)

and (9), lead to

∇2φ = 4πG 0T 00 = 4πGαnβn(−U)n, (22)

∇2ψ = 4πG(2T 00 +2 T ii) = 4πGαnβnφ(−U)n

+12πGαnγn(−U)n+1. (23)

Expanding (−U)n as

(−U)n = (−φ)n[1 + n(2φ+
ψ

φ
) + · · ·], (24)

ans Substituting it in Eqs. (22) and (23) gives

∇2φ = 4πGαnβn[(−φ)n − 2n(−φ)n+1 − n(−φ)n−1ψ + · · ·], (25)

∇2ψ = 4πGαnβn{(3
γn

βn
− 1)(−φ)n+1

−[3(n + 1)
γn

βn
− n][2(−φ)n+2 + (−φ)nψ] + · · ·}, (26)

These equations can be solved numerically by an iterative scheme. We introduce three dime-

sionless quantities

−φ ≡ λθ, (27a)
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−ψ ≡ λ2Θ, (27b)

r ≡ aζ, (27c)

where, in terms of ρc, the central density, λ = (ρc/αnβn)1/n and a−2 = 4πGρc/λ. Equations

(25) and (26) in various iteration orders reduce to

∇2
ζθo + θn

o = 0, (28a)

∇2
ζΘo + (3

γn

βn
− 1)θn+1

o = 0, (28b)

∇2
ζθ1 + θn

1 = qn(2θn+1
o − θn−1

o Θo), (28c)

∇2
ζΘ1 + (3

γn

βn
− 1)θn+1

1 =

q[3(n + 1)
γn

βn
− n](2θn+2

o − θn
o Θo), (28d)

where ∇2
ζ = 1

ζ2

d
dζ (ζ2 d

dζ ). The subscripts 0 and 1 refer to orders of the iteration. The dimension-

less parameter q is defined as

q =
4πGρca

2

c2
=
Rs

R

1

2ζ1 | θ′o(ζ1) |
, (29)

where Rs is the Schwarzschild radius, R = aζ1 is the radius of system, ζ1 is defined by θo(ζ1) = 0

and c is the light speed. The order of magnitude of q varies from 10−5 for white dwarfs to 10−1

for neutron stars. For future reference, let us also note that

− U = λ[θ1 + q(Θ1 − 2θ2
1)]. (30)

We use a forth-order Runge-Kutta method to find numerical solutions of the four coupled non-

linear differential Eqs. (28). At the center we adopt

θa(0) = 1; θ′a(0) =
dθa

dζ
|0= 0; a = 0, 1. (31)

In tables 1 and 2, we summarize the numerical results for the Newtonian and post-Newtonian

polytropes for different polytropic indices and q values. The pn corrections tend to reduce the

radius of the polytrope. The higher the polytropic index the smaller this radius. The same is

true, of course, for higher values of q.
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5 Concluding remarks

As we discussed in section 1, some authors is debated to exist a new modes of oscillations in

relativistic stellar systems. They believed that these modes generated by the perturbations in

space time metric and no have analogue in Newtonian systems. They used the general rel-

ativistic hydrodynamics to distinguish them. Although this way is routine but one needs to

assume some thermodynamic concepts that may be fault in relativistic regime. Hence, to reject

these conceptual problems, we choosed general relativistic Liouville’s equation that is the purely

dynamical theory. The combination Liouville and Einstein equations enable one to study the

behavior of relativistic systems without ambiguity. Therefore, in this paper, we used the pn

approximation to obtain the Einstein-Liouville equation for a relativistic self gravitating stellar

system. We found two integrals, generalization of the classical energy and angular momentum,

that are satisfying pnl in equilibrium state. These solutions enable one to construct an equilib-

rium model for the system in pn approximation. Polytropic models, the most familiar stellar

models, are constructed in pn approximation. In tables 1 and 2, we compared these models with

its Newtonian correspondence. The pn corrections tend to reduce the radius of polytrope. The

higher the polytropic index the smaller this radius. We introduced a parameter q, Eq. (29), to

enter the effect of central density of system in calculations. Increasing values of q reduce the

radius of system. In the second paper (Sobouti and Rezania 1998), we study time-dependent

oscillations of a relativistic system in pn approximation.
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Appendix A: Derivation of Eqs. (5)

Consider a general coordinate transformation (X,U) to (Y, V ). The corresponding partial deriva-

tives transform as






∂/∂X

∂/∂U






= M







∂/∂Y

∂/∂V






,

=







∂Y/∂X ∂V/∂X

∂Y/∂U ∂V/∂U













∂/∂Y

∂/∂V






, (A.1)

where M is the 7 × 7 Jacobian matrix of transformation. Setting X = Y = xµ, V = vi and

U = U i for our problem, one finds

M =







∂xµ/∂xν ∂vi/∂xν

∂xµ/∂U j ∂vi/∂U j






, (A.2a)

and its inverse

M−1 =







∂xµ/∂xν ∂U i/∂xν

∂xµ/∂vj ∂U i/∂vj






. (A.2b)

One easily finds

∂xµ/∂xν = δµν ; ∂xµ/∂vj = 0, (A.3a)

∂U i/∂xν = vi∂U0/∂xν =
U03

vi

2

∂gαβ

∂xν
vαvβ , (A.3b)

∂U i/∂vj = U0δij + vi∂U0/∂vj = U0δij + U03
vigjβv

β. (A.3c)

Inserting the latter in M−1 and inverting the result one arrives at M from which Eqs. (5) can

be read out.
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Appendix B: Post-Newtonian hydrodynamics

Mathematical manipulations in the development of this work has been tasking. To ensure

that no error has crept in the course of calculations we have tried to infer the post-Newtonian

hydrodynamical equations from the post-Newtonian Liouville equation derived earlier. From

Eq. (6a) one has

Lpn
U f = U0(Lcl + Lpn)f

= [(1 − φ+
1

2
v2)Lcl + Lpn]f, (B.1)

where Lcl and Lpn are given by Eq. (10). We integrate Lpn
U f over the v-space:

∫

Lpn
U fd3v =

∫

[(1 − φ+
1

2
v2)Lcl + Lpn]fd3v. (B.2)

Using Eqs. (12) and (13), one finds the continuity equation

∂

∂t
( 0T 00 + 2T 00) +

∂

∂xj
( 1T 0j + 3T 0j) − 0T 00∂φ

∂t
= 0,

(B.3)

which is the pn expansion of the continuity equation

T 0ν
;ν = 0, (B.4)

Next, we multiply Lpn
U f by vi and integrate over the v-space:

∫

viLpn
U fd3v =

∫

vi[(1 − φ+
1

2
v2)Lcl + Lpn]fd3v. (B.5)

After some calculations one finds

∂

∂t
( 1T 0i + 3T 0i) +

∂

∂xj
( 2T ij + 4T ij)

+ 0T 00[
∂

∂xi
(φ+ 2φ2 + ψ) +

∂ηi

∂t
] + 2T 00 ∂φ

∂xi

+ 1T 0j(
∂ηi

∂xj
− ∂ηj

∂xi
− 4δij

∂φ

∂t
) + 2T jk(δjk

∂φ

∂xi
− 4δik

∂φ

∂xj
) = 0. (B.6)

The latter is the correct pn expansion of

T iν
;ν = 0; i = 1, 2, 3. (B.7)

See Weinberg 1972, QED.
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Table 1. A comparison of the Newtonian and post-Newtonian polytropes at certain selected

radii for n=1, 2 and 3 and different values q.

Table 2. Same as Table 1. n=4 and 4.5.
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Table 1.

n Polytropic Newtonian pn polytrope, θ + q(Θ − 2θ2)

radius, ζ polytrope, θ q = 10−5 q = 10−3 q = 10−1

0.0000000 1.00000 1.00000 1.00000 1.00000

1.0000000 0.84145 0.84145 0.84143 0.83936

2.0000000 0.45458 0.45458 0.45433 0.42949

1 2.9233000 0.07408 0.07407 0.07334 0.00000

3.1388500 0.00087 0.00086 0.00000

3.1415500 0.00001 0.00000

3.1415930 0.00000

0.0000000 1.00000 1.00000 1.00000 1.00000

1.0000000 0.84868 0.84868 0.84863 0.84394

2.0000000 0.52989 0.52988 0.52945 0.48609

3.0000000 0.24188 0.24187 0.24031 0.13289

2 3.4737000 0.13904 0.13902 0.13770 0.00000

4.3394800 0.00171 0.00169 0.00000

4.3527000 0.00002 0.00000

4.3529000 0.00000

0.0000000 1.00000 1.00000 1.00000 1.00000

1.0000000 0.85480 0.85480 0.85473 0.84773

2.0000000 0.58284 0.58283 0.58230 0.52894

3.0000000 0.35939 0.35938 0.35824 0.24016

4.0000000 0.20927 0.20925 0.20764 0.03226

3 4.1939500 0.18690 0.18688 0.18520 0.00000

6.8435000 0.00228 0.00225 0.00000

6.8963000 0.00002 0.00000

6.8967000 0.00000

15



Table 2.

n Polytropic Newtonian pn polytrope, θ + q(Θ − 2θ2)

radius, ζ polytrope, θ q = 10−5 q = 10−3 q = 10−1

0.0000000 1.00000 1.00000 1.00000 1.00000

2.0000000 0.62294 0.62293 0.62235 0.56326

4.0000000 0.31804 0.31802 0.31645 0.14194

5.1541000 0.22574 0.22572 0.22383 0.00000

8.0000000 0.10450 0.10448 0.10221

4 12.0000000 0.02972 0.02970 0.02716

14.0000000 0.00833 0.00830 0.00570

14.6468000 0.00265 0.00262 0.00000

14.9680000 0.00003 0.00000

14.9713400 0.00000

0.0000000 1.00000 1.00000 1.00000 1.00000

2.0000000 0.63965 0.63964 0.63905 0.57857

4.0000000 0.36053 0.36651 0.35897 0.18628

5.7468600 0.24334 0.24332 0.24135 0.00000

4.5 8.0000000 0.16173 0.16171 0.15946

12.0000000 0.09015 0.09013 0.08766

16.0000000 0.05402 0.05399 0.05141

20.0000000 0.03230 0.03227 0.02962

24.0000000 0.01782 0.01779 0.01510

28.0000000 0.00747 0.00744 0.00472

30.2689200 0.00282 0.00279 0.00000

31.7792300 0.00004 0.00000

31.7878400 0.00000
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