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Abstract. Alternative gravitations of Milgrom (MOND), of Moffat (MOG), of Sobouti (NLNL), and CDM sce-
narios all simulate rotation curves of spirals with reasonable details. They, however, display significant disparities
in predicting the stellar mass-to-light (M∗/L) ratios of the galaxies. We maintain this feature could serve as a
discriminant between different alternative theories. We analyze the rotation curves of 46 low and high surface
brightness galaxies and compare the resulting M∗/Ls with the predictions of Stellar Population Synthesis (SPS)
scheme. The color - M∗/L correlation obtained for MOND, and NLNL gravities are consistent with predictions
of SPS models. MOG does not show such consistency, and the M∗/Ls of CDM model shows large dispersions.
Furthermore, M∗/L ratios of NLNL gravity favor Kroupa’s initial mass function (IMF) of SPS scheme, while
those of MOND are consistent with Salpeter’s IMF. Here is another indication to differentiate between different
IMF’s used in SPS context.
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1. Introduction

The gravitational force of the observable mass of large
astronomical systems, galaxies, clusters of galaxies, or for
that matter, the universe at large, is not sufficiently strong
to explain the observed dynamics of the systems. To re-
solve the dilemma, one main school of investigators has
resorted to dark matter/dark energy scenarios. In spite of
extensive efforts, however, no one has, so far, reported a di-
rect identification of the hypothesized dark entity through
non-gravitational interactions with the observable matter.
This lack of direct identification has inspired an equally
intensive effort to contemplate alternative theories of grav-
itation. The Modified Newtonian Dynamics (MOND) of
Milgrom (1983), and of Bekenstein (2004), the Modified
Gravity (MOG) of Moffat (2005), the Nonlocal Nonlinear
(NLNL) gravity of Sobouti (2008a, b), and varieties of
f(R) gravities (Capozziello 2002, Capozziello et al. 2006,
Capozziello et al. 2007, Carroll et al. 2004, Sobouti 2007)
fall in this category.

Rotation curves of spiral galaxies as measured by the
21 cm line of HI, often extend well beyond the optical
disks of the galaxies and provide a valuable body of data
to determine the radial dependency of the gravitational
forces in galactic scales. In this paper we construct rota-
tion curves of a large sample of galaxies from the distribu-
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tion of their detectable matter through four different grav-
ity models, MOND, MOG, NLNL and Newtonian gravity
plus cold dark matter (CDM) halos. At first glance all four
models seem to reproduce the observed data with reason-
able details. On a deeper examination, however, we find
significant disparities in their predictions of stellar mass-
to-light, M∗/L, ratios. To differentiate between the mod-
els we resort to stellar population synthesis, SPS, analysis
and the color-M∗/L correlation predicted therein through
various initial mass functions (IMF). There is the possi-
bility to use this feature to discriminate between different
gravity models and different IMFs.

The paper is organized as follows: In section 2 we give
a brief review of different gravity models used in our anal-
ysis. In section 3 we describe our galaxy sample. Fits to
the observed rotation curves are discussed in section 4.
Numerical results and brief concluding remarks are given
in sections 5 and 6.

2. Alternative Gravity Models

In this section we review the basic tenets of three alterna-
tive gravities as well as the Newtonian gravity plus CDM
halos. We present the end formulas that we will use in the
study of the dynamics of galaxies. All four accommodate
the two main asymptotic features of the rotation curves of
spirals; a) the slow non-Keplerian decline of the curves
at large distances from the galaxy, and b) the Tully-Fisher
(TF) relation, approximate proportionality of the asymp-
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totic speed of an orbiting object to the fourth root of the
mass of the galaxy (Tully & Fisher 1977).

Actually there is much debate on how fast or slow
the rotation curves decline, if at all (Persic et al. 1996,
Salucci et al. 2007, Gentile 2008). There are also refine-
ments and redefinitions to the Tully-Fisher relation.
McGaugh 2005 prefers to use the total baryonic (stellar
+ gaseous) mass in TF relation to accommodate the gas-
rich galaxies. See also Stark et al. (2009), for a calibration
of the baryonic TF relation with the help of gas dom-
inated galaxies. Nonetheless, both assumptions (a) and
(b), as stated above, are adequate approximations to the
observed data and will be employed in this paper.

2.1. Modified Newtonian Dynamics of Milgrom,
MOND

Based on observations of galactic rotation curves, Milgrom
(1983), argues that the Newtonian dynamics is not vi-
able below a certain universal acceleration, a0 ' 1.2 ×
10−10m/sec2. To comply with the Tully-Fisher relation he
modifies the law of motion to have an acceleration propor-
tional to the square root of the Newtonian acceleration.
MOND’s acceleration, gmond, and the Newtonian one, gN ,
are connected through Eq. (1) below

gmond

a0
µ

(
gmond

a0

)
=

gN

a0
, (1)

where µ(x) is an interpolating function for transition from
the Newtonian to the MONDian regime. It runs smoothly
from µ(x) = x for x << 1 to µ(x) = 1 for x >> 1. Here
we adopt two commonly used such functions, the standard
interpolating function of Bekenstein & Milgrom (1984):

µ1(x) =
x

(1 + x2)1/2
, (2)

and the simpler function of Famaey & Binney (2005),

µ2(x) =
x

1 + x
. (3)

Hereafter, analysis using µ1 and µ2 will be refereed to as
MOND1 and MOND2, respectively.

2.2. Nonlocal Nonlinear Gravity, NLNL

This is a review from Sobouti (2008a, b, 2009) and Sobouti
et al. (2009). One begins with a spacetime pervaded by a
baryonic perfect fluid of known density and pressure and
a hypothetical dark companion. In the baryonic vacuum
one solves the GR field equations in terms of the unknown
density and pressure of the dark companion. In the weak
field regime one then requires the asymptotic gravitational
force to comply with the TF relation. This enables one to
obtain the spatial distribution of the dark density. For
asymptotically flat rotation curves the amplitude of the
dark density turns out to be proportional to the square
root of the total mass of the baryonic system. The dark
pressure is obtained from the hydrostatic equilibrium of

the dark fluid, itself a requirement of the Bianchi iden-
tities. For the gravitational acceleration, gnlnl, outside a
spherically symmetric baryonic system one finds

gnlnl

a0
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(
gN

a0

)1/2

+
(

gN

a0

)
· · ·+ λn

(
gN

a0

)(n+1)/2

· · · , (4)

where gN and a0 are the the Newtonian and Milgrom’s ac-
celerations, respectively, and λn, n ≥ 2, are dimensionless
parameters to be addressed shortly. The first term on the
right hand side of Eq. (4) is a direct consequence of the
TF relation. The second term is the classical Newtonian
acceleration. The remaining terms come from a formal so-
lution of the field equations. To the best knowledge of the
authors the extent and precision of the present day data
on the rotation curves of spirals do not allow meaningful
estimates of λn. They, however, are bound to be small. For
as we shall see later, the first two terms of Eq. (4) repro-
duce the observed curves with adequate details. Moreover,
the n = 2 term alone in Eq.(4) fades away as r−3, in the
same way the quadrupole field of a flattened system does.
This means, before considering the third term, one should
worry about the non-sphericity of the galaxy. In view of
these considerations, hereafter, we shall truncate the series
of Eq. (4) at its second term.

Equation (4) is an exact weak field solution of GR out-
side the baryonic system. The solution inside the system is
obtained by requiring continuity of the gravitational ac-
celeration at the boundary of the system. This leads to
an expression of the same form as Eq. (4), where now
gN = GM(r)r−2, and M(r) is the mass inside the sphere
of radius r.

The weak field limit of Tensor-Vector-Scalar (TeVeS)
gravity of Bekenstein (2004) is known to produce MOND.
With Bekenstein’s interpolating function

µ3(x) =
(1 + 4x)1/2 − 1
(1 + 4x)1/2 + 1

, (5)

MOND’s acceleration gives the first two terms of Eq. (4),
(see also Hernandez et al. (2010)). In this sense one
might consider the truncated version of Eq. (4) as
a test of MOND with the interpolating function
of Eq. (4). This is a coincidence, however, and it occurs
only in the weak field limit of both TeVeS and NLNL
theories.

The dependence of the gravitational force of Eq. (4)
on its source, the baryonic density ρ(r), is nonlinear, and
through the integral M(r) =

∫
ρd3x, is nonlocal, hence the

acronym Nonlocal Nonlinear. In spite of its dark matter
beginning, the theory does not advocate a dark matter
point of view. The non-Newtonian term in Eq. (4) could be
interpreted as a modification of the standard gravitation.

Equation (4) has an empirical basis and is designed
to accommodate spherically symmetric systems. Like all
other alternatives discussed in this paper, its extension to
non-spherical and many body systems is a non-trivial issue
and may require further assumptions not contemplated so
far. Nonetheless, we are working on one such extension
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and hope to be able to have a sensible generalization of
the virial theorem and possibly a hint to the so-called
fundamental plane of clusters of galaxies.

Our anonymous referee points out, while
NLNL has a covariant beginning, a) M in Eq. (4) is
not a covariant scalar, and b) appearance of M1/2

limits the theory to a given system of mass M , pre-
venting generalization to the whole unverse, say.
Our response to point (a) is at one stage we have
resorted to the weak field approximation. There
the question of covariance does not arise and M is a
scalar in the non-relativistic sense of the word. As
to point (b), We note that nonlinearity and non-
locality are the ever-present feature of any and all
approaches to galactic rotation curves that have
been offered so far. This makes them incapable
of generalization to problems beyond the galaxies.
All we are doing here is to draw attention to these
two features and the peculiarities associated with
it. This includes “one theory for one system” as
the referee correctly puts it.

One last remark: Hehl & Mashhoon 2009 have
a novel and sophisticated approach to nonlocal
gravity. In a galactic context and in the weak
field regime, they are able to produce flat rotation
curves but not the Tully-Fisher relation, i.e. non-
linear dependence on the total mass of the galaxy.
Blome et al. 2010 revisit the problem and make
provision for some sort of nonlinearity that in prin-
ciple could be adjusted to give the Tully-Fisher
relation.

2.3. Modified Gravity of Moffat, MOG

MOG consists of three theories of gravity: the nonsymmet-
ric gravity theory (NGT), the metric-skew-tensor grav-
ity (MSTG) theory, and the scalar-tensor-vector gravity
(STVG). They rely on the existence of a massive vec-
tor field universally coupled to matter. Moffat maintains
that MOG explain the rotation curves of galaxies, clus-
ters of galaxies and cosmological issues without resorting
to dark matter (Moffat 1995, Moffat 2005, Moffat 2006,
Moffat & Toth 2009). Good fits to astrophysical and cos-
mological data have been obtained with his recent ver-
sion of STVG. One notable feature of NGT, MSTG, and
STVG is that the modified acceleration at weak gravita-
tional fields has a Yukawa type addition to the Newtonian
acceleration. In the weak field limit, STVG, NGT and
MSTG produce similar results. The recipe for the grav-
itational force of a spherically distributed mass, M(r), is
(Moffat 2006)

gmog =
G(r)M(r)

r2
, (6)

G(r) = GN ×
{

1 + α(r)
[
1− e−r/r0

(
1 +

r

r0

)]}
,

where GN is the Newtonian gravitational constant, M(r)
is the baryonic mass inside the radius r, and α(r) =

[M0/M(r)]1/2. The parameters M0 or r0 determine the
coupling strength of the vector field to the baryonic mat-
ter and to the range of the force, respectively. They are
not universal constants and vary with the size of the sys-
tems (Brownstein & Moffat 2006, Haghi & Rahvar 2010).
In galactic scales, they are determined by analyzing the
best fit of the theory to the rotation curves of LSB and
HSB galaxies. For normal size galaxies, they are reported
as M0 = 9.6 × 1011M¯ and r0 = 13.9 kpc, and for
dwarf galaxies, as M0 = 2.4 × 1011M¯ and r0 = 9.7 kpc
(Moffat 2006). An empirical fitting of M0 versus r0 for a
wide range of spherically symmetric systems, from solar
size systems to clusters of galaxies is depicted in Figure 2
of (Brownstein & Moffat 2006). MOG’s gravitation tends
to the Newtonian one as M0 → 0 and r0 →∞.

2.4. Newtonian Gravity plus Cold Dark Matter, CDM

In this scenario, gravitation is Newtonian. To account for
the nonclassical behavior of the rotation curves one adds a
spherically symmetric dark halo to the galaxy. Here, we
consider NFW halo with the density distribution,

ρNFW (r) =
ρs

(r/rs)(1 + r/rs)2
,

and the gravitational acceleration

gNFW = 4πGρsrs(
rs

r
)2

[
ln

(
1 +

r

rs

)
− r/rs

(1 + r/rs)

]
, (7)

where rs and ρs are the characteristic
radius and density of the distribution
(Navarro, Frenk & White 1996). The NFW
density comes from numerical simulations of
ΛCDM theory in the framework of struc-
ture formation. There, one also finds that
these parameters are correlated to each other
with the following relations, leaving only one
free parameter to characterize the halo (see
Bullock et al. 2001, Wechsler et al. 2002, and
Neto et al. 2007 for details). Thus,

ρs =
∆
3

c3

ln(1 + c)− c/(1 + c)
ρc, (8)

c = 13.6
(

Mvir

1011M¯

)−0.13

, rs = 8.8
(

Mvir

1011M¯

)0.46

kpc,(9)

where ρc is the critical density of the Universe
and ∆ = 200 is the virial overdensity at z=0
(Bryan & Norman 1998).

Before we leave this section let us point out
some of the shortcomings of the models discussed
here.

All fail to go beyond the point mass or at most
a spherically symmetric mass distribution.

At their final formulation, all resort to the
Tully-Fisher relation to fix their free parameters.
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This limits their applicability to spirals only, and
that with the approximation of spherical symme-
try.

All fail to address ‘many body problems’, e.g.
Milky Way-Andromeda pair, clusters of galaxies,
etc. Even, if they claim they do so, their observa-
tional verification remains to be seen.

All fail to pass solar system tests.
All produce some excess lensing but not enough

to accommodate observations. To see this it is suf-
ficient to note that the dark matter equivalent of
the model produces an excess gravitation. See also
Mendoza & Rosas-Guevara 2007.

None should be expected to throw light on any
cosmological questions such as CMB power spec-
trum, etc, for they are designed only for galactic
missing-mass/missing-gravity issues.

Accuracy and extent of the existing data is a
limiting factor for refinements on any of the mod-
els.

3. Observational data

There are diverse morphological types of galaxies with
diverse shapes and sizes to their rotation curves. Our
sample, a collection of 46 galaxies taken from Sanders
(1996), McGaugh & de Blok (1998), Sanders & Verheijen
(1998) and Begeman (1991), accommodates these diversi-
ties. Members of the sample have well measured rotational
speeds and accurate surface photometry. They are listed in
Table 1 and shown in Figs. 1 - 3. The sample includes sev-
eral very large and luminous members with well-extended
rotation curves, e.g., UGC 2885, NGC 801 & NGC 2903.
They have high surface brightness (HSB), massive stellar
component, and low gas content. Typically, their rotation
curve rises steeply to a maximum and declines slowly into
an almost horizontal asymptote. There are also a num-
ber of dwarf, gas-dominated and low surface brightness
(LSB) galaxies, e.g. DDO 168. There is no conspicuous
maximum, and in some galaxies not even a flat asymp-
tote, to their rotation curve. It is generally believed that
deviations from the classical dynamics is more pronounced
in LSBs than in HSBs. (McGaugh & de Blok 1998a,
Sanders & Noordermeer 2007, Gentile et al. 2010)

Twenty-eight members of the sample, of both HSB
and LSB types, are located in the Ursa Major cluster of
galaxies, believed to be at the distance of about 15.5 Mpc
(Tully & Verheijen 1997). Seven of the galaxies, listed in
Table 3, have central bulges and are treated differently, to
be explained shortly. For a full description of the sample
the interested reader is referred to Sanders and McGaugh
(2002).

4. Constructing rotation curves

We calculate the rotation speed of a test object circling the
galaxy as a function of distance from the galactic center
and the distribution of the detectable matter in the galaxy.

The procedure we follow is almost that of Sanders and
McGaugh (2002):

We approximate the galaxy by a spherically symmet-
ric system. The error committed amounts to ignor-
ing the quadrupole field of the flattened galaxy.
At a distance r, it is of the order of (Rgyr/r)2,
where Rgyr is the gyration radius of the galaxy
about its axis of symmetry. In systems, such as
Kuzmin’s, Mestel’s, Miyamoto - Nagai’s, and exponential
disks (Binney & Tremaine 1987), Rgyr is a few tenths of
the typical length scale of the galaxy. At distances of
about 2-3 times the galaxy’s visible disk the ratio
(Rgyr/r)2 drops to about few percent. See Binney
& Tremaine (1987), equations (2-165, 2-166), and
figure (2-17) for further details.

We assume a constant M∗/L ratio, throughout the
galaxy, though this is not strictly the case, because of the
color gradient in spiral galaxies. However, in seven bulged
spirals we find assigning different M∗/L to the bulge and
the disk improves fittings to the observed data.

We assume the HI gas is in co-planer rota-
tion about the center of the galaxy, an assumption
which may not hold in galaxies with strong bars
(Sanders & McGaugh 2002).

Given the observed distribution of the baryonic mat-
ter (stellar and gaseous disks, plus a spheroidal bulge, if
present), the effective radial gravitational force, and sub-
sequently the circular speed, is calculated from Eqs. (1)
and (4) - (7). Fitting of the calculated rotation curves
to the observed data points is achieved by adjusting the
M∗/L ratio, through a least-square χ2, defined as

χ2 =
1
N

N∑

i=1

(vi
theory − vi

obs)
2

σ2
i

, (10)

where σi is the observational uncertainty in the rotation
speeds. The M∗/L ratio of the disk and of the bulge are
our ultimate results.

5. Numerical Results

All models trace the observed data with reasonable de-
tails. The best-fit χ2 and M∗/L values are listed in Table
1. Figures 1 - 3 show fits of theoretically constructed rota-
tion curves to the observations of 46 galaxies. The general
trend of HSB curves ( steep rise to a maximum followed
by gradual decline to an almost flat asymptote), and of
LSB curves ( slow rise often with no asymptote in sight)
are evident.

Seven galaxies have prominent bulge components. One
expects a bulge with an older population of stars to have a
higher M∗/L ratio than a disk with a younger population.
Therefore, to obtain a better fit for these galaxies, we have
allowed the model to choose different M∗/Ls for the disk
and the bulge. The result, shown in Table 2, confirms the
expectation. The minimum χ2s of Table 2 are detectably
lower than those of the corresponding entries of Table 1
obtained by a single M∗/L fit. Nevertheless, one galaxy
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in our model, NGC 801, and four in MOND’s, NGC 801,
NGC 5371, UGC 2885 and NGC 5907, predict untenably
lower M∗/L for the bulge than for the disk.

McGaugh (private communication) advises us that this
oddity might partially be due to the low resolution of HI
data and/or the sharp rise of v(r) in the bulge. If v(r) is
not quite resolved, one tends to underestimate it, and the
M∗/L of the bulge with it. In many of these galaxies it is
indeed not obvious, whether the inner component is really
a “bulge” in the classical sense of a 3D component with
an r1/4 profile. It is also said that neglecting the flatten-
ing of a bulge leads to an error in its mass-to-light ratio
(Noordermeer 2008). In NGC 6946, there is a tiny bulge
(4 percent of the total light in B-band). It is predicted as
a little kinematic bump in the inner 1 kpc, in high resolu-
tion Fabry-Pérot data (Blais-Ouellette et al. 2004).
Moreover, HI distribution in NGC 6946 is not symmetric
in the galactic plane. It is patchy and seems to deviate
from circular orbits (Carginan et al. 1990).

Ten entries in Table 1 have unacceptably large χ2s.
Suspecting the failure of the assumption of constant
M∗/L, we have followed Barnes et al. (2007), and exam-
ined a radially varying, M∗/L = (M∗/L)0 + mr. The best
fit values of the constants (M∗/L)0 and m for some of
them are displayed in Table 3. The slope, m, is much too
small to result in appreciably lower χ2. The root of the
failure should lie elsewhere. For example, the assumption
of cold unobservable molecular gas in the galactic disk
(Tiret & Combes 2009) leads to better fits with lower χ2.

6. Color – M∗/L Correlation

How realistic are the inferred M∗/L ratios? Stellar pop-
ulation synthesis (SPS) models predict a linear rela-
tion between colors and M∗/L ratios. Redder galaxies
should have larger M∗/L ( see, e.g., Bell & de Jong 2001,
Bell et al. 2003, Portinari et al. 2004). The slope of this
linear relation does not depend on exact details of the his-
tory of star formation, i.e. the assumed IMF. But, depend-
ing on how many stars are present at the low-mass end of
the stellar IMF, the color-M∗/L curve shifts up and down.
For low mass stars contribute significantly to the mass of
a population, but not so much to its luminosity and color
(Bell & de Jong 2001).

In SPS scheme Salpeter’s (1955) IMF overestimates
the M∗/L ratios of many of the galaxies and violates the
condition of ‘disk mass less than the mass of maximum
disk’. To remedy the case, Bell et al. (2003) scale down
Salpeter’s IMF and come up with a limit for the color-
M∗/L relation above which the physical viability is not
guaranteed. Their suggested relation is

log(M∗/LB) = 1.74(B − V )− 0.94. (11)

There are other IMF’s leading to slightly different rela-
tions. For example, Bottema (1997) argue for a
substantially submaximal M/L ratio for all disk
dominated galaxies based on an analysis of the

vertical velocity dispersion of stars. Kroupa (2001),
introduces a turnover at the low mass end of his IMF.
The slope 1.74 is insensitive to such variations in IMF,
but the y-intercept is. To obtain the equivalent relation
for standard Salpeter’s, Kroupa’s, and Bottema’s IMF
one should shift Eq. (11) and the plots in Figure (4) up
and down by roughly (0.15, -0.15, -0.35) dex, respectively
(Bell et al. 2003).

In Figure 4, we contrast M∗/L ratios of the four
gravity models against the predictions of SPS. We
used the B-band luminosities from Sanders &
McGaugh (2002). In each frame the solid line is the
best fit to the data points obtained from the analysis
of the rotation curves. The theoretical SPS predictions
of Bell & de Jong 2001, and Bell et al. 2003, for different
IMFs are also plotted. The slope of NLNL, 1.75 ± 0.26,
of MOND1, 1.78 ± 0.23, and of MOND2, 1.81 ± 0.21 are
reasonably close to that of Eq. (11). The corresponding
y-intercepts, −1.13±0.15, −0.88±0.14, and −1.06±0.12,
respectively, are also in harmony with that of Eq. (11).
The uncertainties in slopes and y-intercepts are
in the 1-σ error. The errors in y-intercepts are small
enough to enable one to differentiate between different
IMFs. NLNL is in good agrement with Kroupa’s IMF.
MOND1 falls somewhere between standard Salpeter’s and
scaled Salpeter’s IMF. MOND2 agrees with Kroupa’s and
scaled Salpeter’s IMF.

The slope for MOG, 1.06± 0.21, cannot be reconciled
with SPS predictions. However, the slope of NFW
halo, 2.33±0.67, is consistent within the error with
1.74, dispersion of the simulated data points in this
case is too large to draw meaningful correlation
between color and M/L ratios.

Any alternative gravity can have a dark matter equiv-
alent. Deviations from the Newtonian gravity can be at-
tributed to a hypothetical entity and a dark density pro-
file can be calculated through Poisson’s equation, say. One
feature, however distinguishes such an interpretation from
the conventional CDM scenarios. Here, there is a well
defined relation between the baryonic matter and its so-
interpreted dark companion. In CDM models baryonic and
dark matters may co-exist independently. In our opinion,
the reason for good agreement of NLNL and MOND grav-
ities with SPS predictions and non-compliance of CDM
with it lies in the existence or non-existence of this rela-
tion between the observable and non observable matters
. In NLNL and MOND, baryonic matter plays a pivotal
role and dark entity owes its existence to it. This is not
the case in CDM. Dark matter is allowed to play a role
independently from the observable matter. As for MOG,
we are not in a position to express an opinion.

Let us summarize our conclusion: a) the SPS scheme
can differentiate between different gravity models and b)
the two together can choose between different IMFs. The
mere fact that a gravity theory reproduces the observed
rotation curves satisfactorily does not tell the whole story.
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7. Concluding Remarks

At least on galactic scales, dynamics of spirals casts doubt
on the viability of the classical theories of gravitation. A
number of alternative theories are capable of reproduc-
ing the rotation curves of spirals with acceptable details,
a nontrivial fact that deserves attention. In this paper
we use three alternative theories of gravitation, MOND,
MOG, NLNL, and a CDM model to deduce the dynamics
of a good size sample of high and low surface brightness
galaxy types, and check the results against observations.
The models, in spite of the fact that all simulate the rota-
tion curves in more or less to the same degree of accuracy,
are not equivalent.

In MOND, MOG, and NLNL, rotation curves are con-
structed with only one free adjustable parameter, the stel-
lar mass-to-light ratio. This is in contrast to the CDM
model, where an additional parameter is needed to de-
scribe the dark component.

It must be stressed that the assumption of
spherical symmetric distribution for spiral galax-
ies in NLNL and MOG models is a limitation of
the present study.

There are cases of bulged galaxies where fits to obser-
vations lead to lower M∗/L ratios for the bulge than for
the disk. This might be due to the low resolution of HI
data and of inner v(r), and/or uncertain size of the bulge.

Stellar population synthesis models impose constrains
on M∗/L: Redder galaxies should have larger M∗/L ra-
tios. NLNL and MOND fulfill this expectation, albeit with
different IMFs. This is noteworthy, as there is no ex-
plicit/implicit connection between the basic tenets of the
SPS and NLNL and/or MOND. On the other hand
MOG does not meet the SPS constraints, and the
M∗/Ls of CDM model shows large scattering such
that does not show meaningful correlation between
color and M/L ratios. It should be noted that, since
the weak field limit of NLNL is similar to MOND
with interpolation function µ3, this is actually an
effective test of Bekenstein’s MOND interpolating
function.

SPS predictions of M∗/L ratios are sensitive to the
adopted IMF. The M∗/L ratios inferred from Salpeter’s
IMF are notably larger than those obtained from
Kroupa’s. NLNL favors Kroupa’s IMF, which produces
lower M∗/L, implying lesser disk masses.

Last but not least: both MOND and our proposed
Nonlinear Nonlocal gravitation have empirical beginnings
and rely heavily on the Tully-Fisher relation, itself an em-
pirical finding.
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Galaxy (Type) B-V M∗/L χ2 M∗/L χ2 M∗/L χ2 M∗/L χ2 M∗/L χ2

NLNL NLNL Mond1 Mond1 Mond2 Mond2 MOG MOG NFW NFW

HSB Galaxies

M 33 (Sc) 0.55 0.3 39.25 0.6 30.22 0.4 36.47 0.8 45.03 0.2 125.00
NGC 300 (Sc) 0.58 0.4 2.35 0.7 2.26 0.5 2.51 1.3 2.54 0.1 2.94
NGC 2903 (Sc) 0.55 1.7 4.79 3.0 6.07 2.2 5.72 2.4 7.18 2.4 3.60
NGC 3726 (SBc) 0.45 0.5 4.60 1.0 3.47 0.7 3.86 0.9 5.00 0.6 3.03
NGC 3769 (SBb) 0.64 0.7 0.70 1.2 0.75 0.9 0.65 1.4 1.06 0.7 0.42
NGC 3877 (Sc) 0.68 0.9 2.60 1.7 2.66 1.2 2.62 1.5 3.07 1.1 2.51
NGC 3893 (Sc) 0.56 1.0 1.88 1.7 4.12 1.3 2.11 1.6 2.76 1.2 1.89
NGC 3949 (Sbc) 0.39 0.5 3.97 0.8 5.34 0.6 3.88 0.8 5.00 0.5 3.29
NGC 3953 (SBbc) 0.71 1.5 0.47 2.7 1.13 2.0 0.48 2.2 0.44 2.1 1.05
NGC 3972 (Sbc) 0.55 0.8 3.08 1.5 3.22 1.0 3.03 1.6 2.85 0.2 1.25
NGC 3992 (SBbc) 0.72 2.7 1.02 4.9 0.65 3.6 0.88 3.6 2.08 4.5 4.11
NGC 4013 (sb) 0.83 1.8 2.24 3.1 1.37 2.3 1.62 2.7 2.05 2.2 1.63
NGC 4051 (SBbc) 0.62 0.7 0.90 1.2 0.88 0.9 0.78 1.1 0.76 0.7 0.78
NGC 4085 (Sc) 0.47 0.6 6.03 1.1 6.84 0.8 6.02 1.1 6.94 0.5 3.93
NGC 4088 (Sbc) 0.51 0.6 1.75 1.1 1.49 0.8 1.62 1.0 1.97 0.8 1.24
NGC 4100 (Sbc) 0.63 1.3 1.58 2.4 2.07 1.8 2.02 2.1 2.12 1.7 2.06
NGC 4138 (Sa) - 2.0 0.81 3.5 1.61 2.7 0.98 3.2 1.20 2.9 1.09
NGC 4157 (Sb) 0.66 1.3 0.87 2.4 0.92 1.7 0.85 2.0 0.84 1.7 0.89
NGC 4217 (Sb) 0.77 1.2 2.90 2.2 3.95 1.6 2.92 1.9 2.63 1.5 3.02
NGC 4389 (SBbc) - 0.2 5.57 0.4 5.36 0.3 5.42 0.6 6.33 0.1 4.33
NGC 5585 (SBcd) 0.46 0.3 10.46 0.5 10.43 0.4 10.22 1.1 16.87 0.1 19.03
NGC 6946 (SABcd) 0.40 0.3 21.61 0.5 11.46 0.4 17.90 0.5 31.75 0.3 1.01
NGC 7793 (Scd) 0.63 0.6 1.48 1.2 1.48 0.9 1.44 1.5 1.02 0.8 1.91
UGC 6399 (Sm) - 0.6 0.10 1.0 0.16 0.8 0.17 1.8 0.04 0.1 1.48
UGC 6973 (Sab) - 1.7 10.57 2.7 20.46 2.2 11.81 2.6 20.24 2.0 6.48

NGC 801b (Sc) 0.61 0.8 14.15 1.2 23.14 1.0 14.75 1.2 23.90 1.2 49.61

NGC 2998b (SBc) 0.45 0.7 2.96 1.2 2.64 0.9 2.43 1.0 2.35 1.4 6.80

NGC 5371b (S(B)b) 0.65 0.9 6.93 1.6 10.02 1.2 8.32 1.3 6.65 1.5 7.65

NGC 5533b (Sab) 0.77 2.1 1.11 3.3 2.33 2.6 1.61 3.8 8.50 5.6 19.61

NGC 5907b (Sc) 0.78 2.1 4.27 4.0 2.93 2.8 3.82 3.0 6.10 3.5 11.23

NGC 6674b (SBb) 0.57 1.6 6.64 2.7 10.96 2.0 7.65 2.6 41.06 4.1 66.96

UGC 2885b (Sbc) 0.47 0.9 3.04 1.5 2.80 1.2 2.98 1.4 6.64 1.9 14.85

LSB Galaxies

DDO 168 (SO) 0.32 0.1 21.56 0.2 11.50 0.1 14.35 1.5 14.64 0.1 26.67
NGC 247 (SBc) 0.54 0.7 4.16 1.1 3.71 0.8 3.91 2.0 3.74 0.1 10.34
NGC 1560 (Sd) 0.57 0.3 1.52 1.1 3.35 0.6 1.94 4.6 10.56 0.1 17.00
NGC 3917 (Scd) 0.60 0.7 4.58 1.3 4.49 0.9 4.58 1.4 4.03 0.2 6.51
NGC 4010 (SBd) 0.54 0.8 1.76 1.4 1.81 1.0 1.74 1.7 1.16 0.1 2.42
NGC 4183 (Sa) 0.39 0.4 1.09 0.7 0.98 0.5 0.98 1.0 1.54 0.4 0.20
UGC 128 (Sdm) 0.60 0.6 0.63 1.1 0.48 0.8 0.54 1.9 0.36 0.1 2.57
UGC 6446 (Sd) 0.39 0.3 4.49 0.5 2.30 0.4 3.29 1.2 2.35 0.1 0.30
UGC 6667 (Scd) 0.65 0.6 0.69 1.0 0.94 0.8 0.88 1.9 0.59 0.1 3.95
UGC 6917 (SBd) 0.53 0.8 0.72 1.4 0.64 1.0 0.69 2.0 0.84 0.1 0.49
UGC 6923 (Sdm) - 0.4 1.03 0.8 1.17 0.6 1.16 1.4 2.28 0.1 0.56
UGC 6930 (SBd) 0.59 0.4 0.54 0.8 0.28 0.6 0.34 1.2 0.34 0.2 0.19
UGC 6983 (SBcd) 0.45 0.9 1.68 1.7 1.30 1.2 1.46 2.3 1.90 1.1 0.54
UGC 7089 (Sdm) - 0.1 0.25 0.2 0.14 0.2 0.40 0.6 0.11 0.9 3.18

Table 1. Best-fit reduced χ2 and M∗/L values of 32 HSB galaxies in NLNL, MOND, MOG, and NFW models. Hubble types
are from NASA/IPAC Extragalactic Database (NED). Bulged galaxies are marked by a superscript ’b’.



Hasani et al.: SPS scheme, a discriminant between gravity models 9

Galaxy χ2
NLNL (M∗

L
)disk
NLNL (M∗

L
)bulge
NLNL χ2

MOND1 (M∗
L

)disk
MOND1 (M∗

L
)bulge
MOND1

NGC 801 12.69 1.1∗ 0.7 17.72 2.2∗ 1.1
NGC 2998 2.22 0.6 0.8 2.50 1.2 1.3
NGC 5371 6.34 0.8 1.0 9.96 1.7∗ 1.6
NGC 5533 0.98 0.7 2.2 2.12 0.1 3.7
NGC 5907 3.5 1.8 3.2 2.80 4.1∗ 3.6
NGC 6674 6.32 0.4 1.8 10.83 1.5 2.9
UGC 2885 2.07 0.8 1.1 2.80 1.5∗ 1.4

Table 2. Same as Table 1, for seven bulged galaxies. Disks and bulges have different M∗/L ratios. One galaxy in NLNL model
and four in MOND1’s predict untenably smaller M∗/L for the bulge than for the disk. These are marked by asterisks.

Galaxy χ2
NLNL (M∗

L
)0,NLNL mNLNL χ2

MOND1 (M∗
L

)0,MOND1 mMOND1

M 33 37.4 0.4 -0.01 27 0.6 0.01
DDO 168 20.19 0.1 -0.02 10 0.1 0.07
NGC 801 14.15 0.8 0.00 19.88 1.1 0.01

Table 3. Linear, M∗/L = (M∗/L)0 + mr, fit for 3 cases not well explained neither by our formalism nor by that of MOND.
Comparison with constant M∗/L of these galaxies (Table 1) shows no significant improvement.
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Fig. 1. Rotation curves of 32 mainly HSB galaxies. Points with vertical error bars are the observed data. Dotted (black) and
short dashed lines are contributions of the gaseous and stellar components to the Newtonian rotation speeds, respectively.
M∗/Ls of NLNL model are used in plotting the stellar component. Solid line is the rotation curve constructed through NLNL
model. Long dashed (blue) line is that of MOND1. Dashed-dotted (green) and dotted (red) lines are that of MOG
and NFW models, respectively.



Hasani et al.: SPS scheme, a discriminant between gravity models 11

Fig. 2. Fig. 1 continued. The last seven galaxies have a bulge component, depicted as dashed-dotted lines.
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Fig. 3. Rotation curves of 14 LSB galaxies. Legend as in Fig. 1.
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Fig. 4. Plots of M∗/L versus B − V . Data points in different panels are those of MOND, of NLNL, of MOG, and of CDM
with NFW halo profile. MOND1 and MOND2 refer to the two interpolating functions, µ1 and µ2, of Eqs. (2) and (3),
respectively. Solid line in each panel is the best fit to the prediction of the gravity model in question. Slopes and y-intercepts
of best-fitted lines are shown in the panels. In NLNL and MOND, error in y-intercepts, ∼ ±0.15, is small enough to distinguish
one model from the other and one IMF from the other. Other lines denote the theoretical predictions of SPS with different
IMFs (Bell & de Jong 2001, Bell et al. 2003). They have almost the same slope but different y-intercepts. Slopes of NLNL and
MOND are reasonably close to the prediction of SPS. That of MOG is not. Slope in NFW model is consistent with
SPS prediction within the error (∼ ±0.7), but it shows large dispersion.


