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Overview

v'We learned to solve a system of linear equations

v'Solved Least Square problem (using normal
equations)

v'Some review on elementary linear algebra

v'Change of basis
v'Is it possible to define a new coordinate system?
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“7 What are the axis like?

’ Why we need to change the basis?
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?é, Vector spaces

Chapter 4 of book “elementary linear algebra”
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Vectors in plane
* A vector is represented by a directed line segment

* initial point at the origin
e terminal point at (x1, x2),
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Figure 4.1



Institute for Advanced Studies in Basic Sciences, Zanjan, Iran
Department of Computer Science and Information Technology

Computational Data Mining

" Examples of vectors in R3

B

> 7
'

FP(2,3,5)
(xla 09 x3)
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. U + v is avector in the plane.
.U+t vVv=v-+tu

w+v)+w=u+(v+w
ut+0=u

u+(—u)=90

cu 1s a vector in the plane.
clu +v)=cu+cv

(¢ + d)u = cu + du

c(du) = (cd)u

l(u) =u

Properties of vector operations in R?

10
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R! = 1-space = set of all real numbers
R? = 2-space = set of all ordered pairs of real numbers
R? = 3-space = set of all ordered triples of real numbers

R" = n-space = set of all ordered n-tuples of real numbers Fa
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“» Properties of Vector Addition and
~ Scalar Multiplication in R™

Let u, v, and w be vectors in R", and let ¢ and d be scalars.

1. u + vis a vector in R". Closure under addition
2Z.ut+tv=v-+u Commutative property of addition
.(u+v)+w=u+(v+w Associative property of addition

4. u+0=u Additive identity property
S5.u+(—u)=0 Additive inverse property

6. cu is a vector in R". Closure under scalar multiplication

7. clu + v) = cu + ¢v Distributive property

8. (c+du=cu+ du Distributive property

9. c(du) = (cd)u Associative property of multiplication
10. 1(u) = u Multiplicative identity property

12
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Linear Combination of Vectors

*aq = (_11 _21 _2)1 a; = (OI 11 4)1 as = (_11 11 2)

* Linear combination of a4, a, and a5 (x{, x5, x3 € R)

Z =XxX1aq + X905 +Xx3 Q3

* Forx; =1,x, =2,x3 =-—1
Z = Qaq -+ Zaz — Ag

z=(0,—-1,4)

13
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Definition of a vector space

* We reviewed Properties of Vector Addition and
Scalar Multiplication in R™

* Any set that satisfies these properties (or axioms) is
called a vector space, and the objects in the set are
vectors.
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» Definition of a Vector Space

Let V be a set on which two operations (vector addition and scalar
multiplication) are defined. If the listed axioms are satisfied for every u, v, and
w in V and every scalar (real number) ¢ and d, then V is a vector space.

Addition:

l. u + visin V. Closure under addition
2.utv=v-+u Commutative property
J.u+(v+w)=(ua+v) +w Associative property
4. V has a zero vector 0 such that for Additive identity

everyuinV,u + 0 = u.
5. For every u in V, there 1s a vector Additive inverse

in V denoted by —u such that

u+(—u)=0.

Scalar Multiplication:

6. cuisin V. Closure under scalar multiplication
7. clu + v) = cu + ¢v Distributive property

8. (c + dju = cu + du Distributive property

9. ¢(du) = (cd)u Associative property
10. 1(u) = u Scalar identity

A vector space consists of four entities: a set of vectors, a set of scalars,

and two operations.
15
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Examples

e The set of all ordered pairs of real numbers R? with the
standard operations is a vector space.

e v=(vl, v2)
* The set of all ordered pairs of real numbers R™ with the
standard operations is a vector space.
e v=(vl1,v2,v3,...,vn)
* The set of all 2 x 3 matrices with the operations of matrix
addition and scalar multiplication
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4 Summary of Important Vector Spaces
R = set of all real numbers
R? = set of all ordered pairs
R? = set of all ordered triples
R" = set of all n-tuples
C(— oo, oo) = set of all continuous functions defined on the real number line
Cla, b] = set of all continuous functions defined on a closed interval [a, b],
where a # b
P = set of all polynomials
P, = set of all polynomials of degree = n (together with the zero
polynomial)
M, , = setof all m x n matrices
an = setof all n x n square matrices

Why it is useful to define vector spaces?

17
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"~ Examples of what is not a vector space

* The set of integers
« % *1=7% (notaninteger)

* The set of second-degree polynomials
o X2+ (1+x-x2) = 1+x (first degree)

18
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"7 | Definition of a Subspace of a Vector Space

A nonempty subset W of a vector space V is a subspace of V when W is a vector
space under the operations of addition and scalar multiplication defined in V.

X y

The set W ={(x,, 0, x5): Xx; and x; are real numbers} is a subspace of R®

19



* Determine whether each subset is a subspace of R?.

* The set of points on the linex +2y =0
vl = (-2t1, t1) and v2 = (-2t2, t2)
vl +v2 =(-2t1,t1)+(-2t2,t2)=(-2(t1 +t2),t1 +t2)=(-2t3,t3)

* The set of points on the linex+2y=1

This subset of R? is not a subspace of R? because every subspace must
contain the zero vector (0, 0), which is not on the line x + 2y = 1.
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g?,/ Definition of a Linear Combination of Vectors
g A vector v in a vector space V is a linear combination of the vectors u,,
u,,. . .,u,in V when v can be written in the form
vV=cu +cu + -+ cuy
where ¢, ¢,, . . ., c, are scalars.

21
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P, Spanning sets

Definition of a Spanning Set of a Vector Space

LetS = {v,,V,,. . ., V,} beasubset of a vector space V. The set § is a spanning
set of V when every vector in V can be written as a linear combination of vectors
in S. In such cases it is said that S spans V.

22
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Spanning sets

Definition of a Spanning Set of a Vector Space

LetS = {v,,V,,. . ., V,} beasubset of a vector space V. The set § is a spanning
set of V when every vector in V can be written as a linear combination of vectors
in S. In such cases it is said that S spans V.

Example:
$={(1,0,0),(0,1,0),(0,0,1)} spans R* because any vector u = (uy, u,, Us) in R* can
be written as

u=u,1,0,0)+u,0,1,0)+us(0,0, 1) = (uy, u,, us).

23
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2
- Example

$=1{(1,2,3),(0,1, 2),(-1,0, 1)}

 does not span R3 because w = (1, -2, 2) is in R®> and cannot
be expressed as a linear combination of the vectors in S.

24
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- Example

Computational Data Mining

 Show that the set S={(1, 2, 3), (0, 1, 2), (-2, O, 1)}
spans R3.

25
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" Example

 Show that the set S={(1, 2, 3), (0, 1, 2), (-2, O, 1)}
spans R3.

* Find scalars c,, ¢,, and ¢; such that

(uy, Uy, Us3) =¢4(1, 2,3) +¢,(0, 1, 2) + c5(-2, 0, 1)

=(c, - 2¢5, 2¢, + ¢y, 3¢, + 2¢, + C3)

26
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3
7
-7 Example

 Show that the set S={(1, 2, 3), (0, 1, 2), (-2, O, 1)}
spans R3.

* Find scalars c,, ¢,, and ¢; such that

(uy, Uy, Us3) =¢4(1, 2,3) +¢,(0, 1, 2) + c5(-2, 0, 1)

=(c, - 2¢5, 2¢, + ¢y, 3¢, + 2¢, + C3)

C — 2¢; = u,
2c, + ¢, = U,
3¢, + 2¢, + 3 = u,

27
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Definition of the Span of a Set

IfS = {vl, Voso o vy vk} is a set of vectors in a vector space V, then the span of S
1s the set of all linear combinations of the vectors in S,

span(S) = {¢,v, + ¢,v, ++ - - + ¢V, ¢}, sy . . ., C, are real numbers}.
The span of S is denoted by
span(S) or span{v,, V,,. . .,V.}.

When span(S) = V, it is said that V is spanned by {v,,v,,. . .,V,}, or that
S spans V.

THEOREM 4.7 Span(S) Is a Subspace of V

If S ={v,,v,,. . .,V is aset of vectors in a vector space V, then span(S) is a
subspace of V. Moreover, span(S) is the smallest subspace of V that contains S,
in the sense that every other subspace of V that contains S must contain span(S).

28
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Fkg #

7
- Example

$=1(1,0,0),(0,0,1)}  (xy2) Zx

(xla 09 x3)

29
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, Definition of Linear Dependence and Linear Independence

Asetof vectors S = {v,, v,,. . ., v,}inavectorspace V is linearly independent
when the vector equation

CIVI +C2V2+' * °+Cka=0
has only the trivial solution

[ ¢, =0,¢,=0,...,¢=0. ]

If there are also nontrivial solutions, then S is linearly dependent.

THEOREM 4.8 A Property of Linearly Dependent Sets

AsetS = {vl, Vos o vy vk}, k = 2,1s linearly dependent if and only if at least one
of the vectors v, can be written as a linear combination of the other vectors in S.

30
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%/ Testing for Linear Independence

S ={v, v, vi} =1{(1,2,3),(0,1,2),(=2,0, 1)}
c,V, T ¢V, T c3v; =0

¢(1,2,3) + ¢,(0, 1,2) + ¢5(=2,0, 1) = (0,0,0)
(¢, — 2¢3, 2¢, + ¢5, 3¢, + 2¢, + ¢3) = (0,0,0)

31
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S = Vv vy = {(1,2,3), (0. 1,2), (=2.0, 1)}

c,V, T ¢V, T c3v; =0

(¢, — 2¢3, 2¢, + ¢5, 3¢, + 2¢, + ¢3) = (0,0, 0)

Cy — 2¢;, =0
2¢, + ¢, =0
3¢, + 2¢, + ¢3=0

1 0 —2 0 1 0 0 0
2> 1 0 o] =» Jo 1 0 0
3 2 1 0 0o 0 1 0

c,=¢,=¢c3=0.So0, Sis linearly independent

32
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S={(1,2,0),(=2,2, 1)} S={4,-4,-2),(-2,2, 1)}
The set S is linearly independent. The set S 1s linearly dependent.

Two vectors u and v in a vector space V are linearly dependent if and only if
one is a scalar multiple of the other.

33
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Basis for a vector space

Definition of Basis

A set of vectors § = {v,, V,,. . .,V }ina vector space V is a basis for V when
the conditions below are true.

1. S spans V. 2. § is linearly independent.

Example

S={@1,0,0),(0,1,0),(0,0,1)}is a basis for R3

S is the standard basis for R3. This can be generalized to
n-space

34
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%

- Example: A Nonstandard Basis for R?
*5= {(11 1)1 (11 _1)}

* Homework: prove it!

35
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THEOREM 4.11 Number of Vectors in a Basis

If a vector space V has one basis with n vectors, then every basis for V has
n vectors.

THEOREM 4.10 Bases and Linear Dependence

IfS = {vl, Voro o s vn} is a basis for a vector space V, then every set containing
more than n vectors in V' is linearly dependent.

36
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" Only one of the conditions will suffice!

THEOREM 4.12 Basis Tests in an n-Dimensional Space

Let V be a vector space of dimension n.

1. If S = {v, v,,. . ., v, }1is a linearly independent set of vectors in V, then S
is a basis for V.
2. If S ={v,,v,,. . .,V }spans V, then S is a basis for V.

37
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A THEOREM 4.9 Uniqueness of Basis Representation

If S ={v,,v,,. ..,V }is abasis for a vector space V, then every vector in V
can be written in one and only one way as a linear combination of vectors in S.

Proof: Assume that a vector u has two representations:

o

u:CIV1+02V2+' "+CV

u=byv, +byv,+---+bv,
—u_u:(cl_bl)v1+(C2_b2)v2+"'+(Cn_bn)vn:0
) cl—b1=0, cz—b2=0, e ey cn—bn=0
which means that ci= bforalli=1, 2,...,n, and u has only one

representation for the basis S.

38
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"+” | THEOREM 4.9 Uniqueness of Basis Representation

If S ={v,,v,,. ..,V }is abasis for a vector space V, then every vector in V
can be written in one and only one way as a linear combination of vectors in §.

n: dimension of v

39
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Coordinates and Change of Basis

* In Theorem 4.9, you saw that if B is a basis for
a vector space V, then every vector x in V can
be expressed in one and only one way as a
linear combination of vectors in B.

 The coefficients in the linear combination are
the coordinates of x relative to B.

S =1{v, v, vs} =1{(1,2,3),(0,1,2),(=2,0, 1)}

How can we find the coordinate of point P with regard to this new basis?

40



Institute for Advanced Studies in Basic Sciences, Zanjan, Iran g -
Department of Computer Science and Information Technology Computational Data Mining

2 Coordinate Representation Relative to a Basis

Let B ={v,,V,,. . .,V,}be an ordered basis for a vector space V and let x be a
vector in V such that

X = Clvl + C2V2 + Lo + CnVn.

The scalars ¢y, ¢,, . . ., c, are the coordinates of x relative to the basis B. The
coordinate matrix (or coordinate vector) of x relative to B is the column
matrix in R"” whose components are the coordinates of x.

[X]B - 6:2

41
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./ Forthe vector x = (x4, x,, . . ., X)), the x/s are the

| coordinates of x relative to the standard basis S for
R".

[x] = |2

42
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Find the coordinate matrix of x = (-2, 1, 3) in R3 relative
to the standard basis
S={1,0,0),(0,1,0),(,o0,1)}

43
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Find the coordinate matrix of x = (-2, 1, 3) in R3 relative
to the standard basis
S={1,0,0),(0,1,0), (0,0, 1)}

—2

[x]s = 1|
3

L —

44
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°/ Finding a Coordinate Matrix
" Relative to a Standard Basis

The coordinate matrix of x in R? relative to the (honstandard)
ordered basis B ={v1, v2} ={(1, 0), (1, 2)}is

-l

Find the coordinate matrix of x relative to the
standard basis B' = {u, u ;= {(1, 0), (0, 1)].

45
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The coordinate matrix of x in R? relative to the (honstandard)
ordered basis B ={v1, v2}={(1, 0), (1, 2)}is

Find the coordinate matrix of x relative to the
standard basis B'={u, u } ={(1, 0), (0, 1)}.

solution

The coordinate matrix of x relative to B is [x]; = B}, SO

x = 3v, +2v, = 3(1,0) + 2(1,2) = (5,4) = 5(1,0) + 4(0, 1).

It follows that the coordinate matrix of x relative to B’ is

=[]

46
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yX=31,0)+2(1,2) y x =5(1,0) +4(0, 1)

A o [X]B’=_ [2]

" Nonstandard basis:
B ={(1,0),(1,2)}

Standard basis:
B' ={(1,0), (0, 1)}

47
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b“; Finding a Coordinate Matrix

Relative to a Nonstandard Basis

* Find the coordinate matrix of x = (1, 2, -1) in R3
relative to the (nonstandard) basis

B'={ul, u2,u3}={(1,0,1), (0, -1, 2), (2, 3, -5)}

X = CyU; + C,U, + C3Ug
(1,2,-1)=c¢4(1,0,1)+c,(0, -1, 2) + c5(2, 3, -5)

48
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%’y X = c,u, + cu, + c3u;,
%
}" (1, 2, - ].) = Cl(]., 0, ].) + Cz(ﬂ, - ]., 2) + C3(2, 3, _5)

49
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',3 ’/ X = c,u, + cu, + c3u;,
v (1,2, =1) = ¢,(1,0, 1) + ¢,(0, —=1,2) + ¢4(2,3, =5)
c, + 2c;= 1
—cy+3c;= 2
¢t 2¢, — 5¢; = —1
1 0 2e] [ 1
0 -1 3, | = 2
1 2 =5]|ley =1

50
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;}é’/ X = c,u, +cu, + cyu,
Y (1,2, =1) = ¢,(1,0, 1) + ¢,(0, =1, 2) + ¢4(2, 3, =5)
c, + 2¢; = 1
—cy, + 3¢y = 2
¢, + 2¢, = 5¢; = —1
10 2] | 1
0 -1 3, | = 2
1 2 =5]|ley | —1]
The solution of this system is ¢, = 5, ¢, = —8, and ¢; = —2. So, 5
x = 5(1,0, 1) + (—8)(0. —1.2) + (—2)(2. 3. —5) (Xl = | =8

51



SN
L4

Homework

e Given a set of N points in R2 B ={v1, v2}={(1, 0), (1, 2)},
transfer them to their coordinates with standard basis and
visualize the two set

* Given the standard coordinates, how can you transfer them
back to the space with basis B ={v1, v2} ={(1, 0), (1, 2)}

* See Section 4.7 of the book for every arbitrary B and B’




CHANGE OF BASIS IN R"

* Finding a Coordinate Matrix Relative to another
Basis (standard or non-standard)

e Given the coordinates of a vector relative to a basis B
 Find the coordinates relative to another basis B’

* General formulation?
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b
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" |If BIs the standard Basis

—t (O b
|
—
('S
O
o
|
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—t (O b
|
—
('S
O
o
|

P [X]B’ [X:IB

Transition matrix coordinate matrix coordinate matrix

from B' to B of x relative to B’ of x relative to B

55
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3
" Change of Basis from B to B’

Plx]p = [x]p
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..
" Change of Basis from B to B’

Plx]p = [x]p

Y
[xl, = P[x], |
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- Example

C] _1
ol=1 3
| C3_ 1

|
W
N

I

|
o0
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%/ Generalization

4R 4
*
4

B={v,V,,...,v}tand B ={u,u,,...,u}

C d _
c1 dl [x]p = P Y[x];.
[x]p = | 7 |and[x]p = |7 1 A X
. . Coordinate Transition Coordinate
C d . ) .
_n LN _ matrix of x matrix matrix of x

relative to B’ || from B to B’ || relative to B

59
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“b% Generalization

3
4

A

[x]p = P7[x],.

X

B={v,V,,...,v}tand B ={u,u,,...,u}
_Cl_ _dl_
C d

[x]p = :2 and [x], = 2 ﬂ
C: d. Coordinate
_ L matrix of x

relative to B’

Transition
matrix

Coordinate
matrix of x

from B to B’ || relative to B

THEOREM 4.20 The Inverse of a Transition Matrix

If P is the transition matrix from a basis B’ to a basis B in R", then P is invertible

and the transition matrix from B to B’ is P~ 1.

60
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then the transition matrix from B to B’ is

€y €1p - .. €

0= Co; Cyr + - . Cap

., u,} be two bases for a vector

LEMMA
LetB={v,Vy...,v,Jand B = {u,u,,. .
space V. If

Vi =cpyup T euy + 0 s+ ocu,

V, = cpuy + ey, + - - - g

v}’l - Clnul + CEH“E + -t Cnnun

61
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LEMMA

Let B = {v], Vo, . .
space V. If

Vi, = cpjuy T cuy + oo
V, = ¢y oo, oo

V, = Cp,u; T cuy + -

.,Vn}aﬂdB’ = {“11“2:- .

-+ Cﬂ]uﬂ
-+ Cnlun

' + Cﬂﬂuﬂ

then the transition matrix from B to B’ is

€11 €12

_ | €21 €22
0 .

Ilcm] CHE

., u,} be two bases for a vector

Q[V]B = [V]B’

62
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" Proof (read it at home)
Letv =dv, + d,v, + - - - + d,v, be an arbitrary vector in V. The coordinate matrix
of v with respect to the basis B is
'R
d,

[V]B -

.
.
L]

d,
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 Proof (cont.)
Letv =d,v, + d,v, + - - - + d, v, be an arbitrary vector in V. The coordinate matrix
of v with respect to the basis B is
A
[V]B = (iz .
d,

Cr, || dy cpdy +cpdy, + -0 -+ cy,d,
Cop ||y | _ | Caydy + Cppdy + - - -+ ¢,d,
Cmi_ _dn_ _Cnldl + cn2d2 +- -+ cnndn_
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Computational Data Mining

'.On the other hand,
v=d,v, +dv, +---+4dy,
=d(cyu; + cuy +- - -+ cu,) Hdylepuy Fopuy - - -t cpn,) -
+d,(c,u, + cuy + - - -+ c,u,)
= (d\c;) T dyery ++ - -+ de)u + (dicy +dycyy +- - -+ dcy)u, + o

+ (dlcnl + dZCrIZ +- -+ dncrm)un
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%, Proof (cont.)
" On the other hand,
1’=d1?’1+d2":’2+' : '+dnvﬂ
=d(c;ju; + cyuy, +- - -+ ¢u,) Hdy(cpu; Fepu, +0 - -+ cpu) oo
+ dn(clnul + CEH“Z +- -+ Cnnun)
= (dlcll +dyey, +- - -+ dncln)ul + (d1‘3'21 +dycpy + - - F dncin)ui +-
+ (dlcnl + dZCHZ +- -+ dncnn)un

which implies

_Clldl +cpdy, + - - -+ cyd,
Coydy + Cppdy + - - -+ ¢y d

n

[v]p =

_cnldl + CnZdE +- -+ C}mdn
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% Proof (cont.)

b s
X2

’ .011 the other hand,

v=dyv, +dywv,+---+dyv,
=d(cyu; + cuy +- - -+ cu,) Hdylepuy Fopuy - - -t cpn,) -
+d,(cu; + 0 + - -+ c,0,)
= (d\c;) T dyery ++ - -+ de)u + (dicy +dycyy +- - -+ dcy)u, + o
+ (dic,y + dycp + - - -+ dycy)u,

which implies

_Clldl +ocpdy, + - - -+ cy,d,

[v], = Cpdy + Cppdy + - - -+ 0y,
Bf L] L] L]

_Cnldl + CHZdE +- -+ Cﬂﬂdﬂ_

‘ So, O[v]; = [v]z and you can conclude that Q is the transition matrix from B to ;.B;'
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THEOREM 4.21 Transition Matrix from B to B’
Let
B={v.,vy...,v,} and B ={u,u,...,u}

be two bases for R". Then the transition matrix P! from B to B’ can be found by
using Gauss-Jordan elimination on the n x 2n matrix [B’ B], as shown below.

(B B] =» [1, P']
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- Example of finding P (B = B’)

B =1{(1,0,0),(0,1,0),(0,0,1)} and B’ =1{(1,0,1),(0,—1,2),(2,3, —5)}

1 0 0 1 0 2
B=[0 1 0| and B =[0 -1 3
0 0 1 i -5
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X%, &

"~ Example of finding P (B = B’): Solution

* Rewrite [B’ B] as [I; P~1] using Gauss-Jordan
Elimination

1 0o 2 1 0O 0 1 O 0 —-1 4 2
0 —1 3 0 1 0o =-» [0 1 0 3 —7 -3
1 2 -5 0 0 1 0o 0 1 1 -2 -1
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4 Example of finding P (B = B’): Solution

* Rewrite [B’ B] as [I; P~1] using Gauss-Jordan

Elimination

1T 0 2 1 0 0 1 0 0 -1 4 2
0o -1 3 0 1 o] =-» (0 1 0 3 -7 =3
1 2 -5 0 0 1 o 0o 1 1 -2 -1

From this, you can conclude that the transition matrix from B to B’ is
-1 4 2

pl=| 3 -7 -3]|
1 -2 -1
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Summary

* Vector space
* Basis for a vector space

* Coordinates and Change of basis
* Not necessarily orthogonal

y x=5(1, 0)+4(0, 1)
B -.[.]
- (5 4)

CSw

b
B' ={(1,0). (0. 1)}

Computational Data Mining

o= 31,0+ 2(1, 2)

0y 3]

_::-' [3 2]

““Nonstandard basis:
B ={(1,0),(1,2)}

.': .': .': .': — -rr
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VNN
o
L2 g
%

7 Where can we use this?

Eefore PCA
PCA - first two components b ; ! g 5 ; ! ! !
4l RTINS OO P LD - e 4
- :
L I I e o
E .
R E I S, '.. ........ | IEEEEEEE | I
".’ : : : :
i ol '. j I SRR % el H
: : : : M Class 1
L 4 i 1
§i 4 3 3 i 5
Feature 1
L o After PCA
a
b o
-y ol
° ¥
=]
i
(o]
2
+
1 1 1 1 L 1 1 1
E 2 =T = =T 1] Lo v 1! -

PC Score 1
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», .
- Any Question?
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