Multimedia Systems Part 18

Mahdi Vasighi www.iasbs.ac.ir/~vasighi

Department of Computer Science and Information Technology, Institute for Advanced Studies in Basic Sciences, Zanjan, Iran

Lossless Predictive Coding

the predictor is based on f_{n-1} , f_{n-2} , ... Therefore, the predictor must involve a memory.

Differential Pulse Code Modulation (DPCM) is exactly the same as Predictive Coding, except that it incorporates a quantizer step.

• can be uniform or no-nuniform

- The original signal f_n ,
- the predicted signal \hat{f}_n ,
- the quantized, reconstructed signal \tilde{f}_n .

How DPCM operates is to form the prediction \hat{f}_n , form an error e_n by subtracting the \hat{f}_n from the actual signal f_n , then quantize the error to a quantized version, \tilde{e}_n .

$$\hat{f}_{n} = \text{function_of} (\tilde{f}_{n-1}, \tilde{f}_{n-2}, \tilde{f}_{n-3}, \ldots)$$

$$e_{n} = f_{n} - \hat{f}_{n}$$

$$\tilde{e}_{n} = Q[e_{n}]$$

transmit codeword(\tilde{e}_n)

The main effect of the coder–decoder process is to produce reconstructed, quantized signal values

$$\tilde{f}_n = \hat{f}_n + \tilde{e}_n$$

The "distortion" is the average squared error and calculated as follows:

$$distorsion = \frac{\sum_{n=1}^{N} (\tilde{f}_n - f_n)^2}{N}$$

One often sees diagrams of distortion versus the number of bit levels used.

$$\min \sum_{n=i}^{i+N-1} (f_n - Q[f_n])^2 \qquad \min \sum_{n=i}^{i+N-1} (d_n - Q[d_n])^2 l(d_n)$$

- The predictor is always based on the reconstructed, quantized version of the signal
- The box labeled "Symbol coder" in the block diagram simply means a Huffman Coder
- we need to buffer previous values of f[~] to form the prediction

- The predictor is always based on the reconstructed, quantized version of the signal
- The box labeled "Symbol coder" in the block diagram simply means a Huffman Coder
- we need to buffer previous values of f[~] to form the prediction

It helps us explicitly to understand the process of coding to look at actual numbers. Suppose we adopt a particular predictor as follows:

$$\hat{f}_n = tru \; n \{ (\tilde{f}_{n-1} + \tilde{f}_{n-2})/2]$$

$$e_n = f_n - \hat{f}_n$$
$$\hat{e}_n = Q[e_n]$$

Let us use the particular quantization scheme

 $\tilde{e}_n = Q[e_n] = 16 \times \text{floor} [(255 + e_n)/16] - 256 + 8$

 $\tilde{e}_n = Q[e_n] = 16 \times \text{fix}[(255 + e_n)/16] - 256 + 8$

As an example stream of signal values, consider the set of values:

f1 f2 f3 f4 f5	<i>e</i> _n in range	Quantized to value
130 150 140 200 230	-255240	-248
$\hat{f} = tru n h (\tilde{f} + \tilde{f}) / 2$	-239224	-232
$J_n = U u n \left[(J_{n-1} + J_{n-2})/2 \right]$	-angan	
$e_n = f_n - \hat{f}_n$	-31 -16	-24
	-150	-8
$\hat{f} = \begin{bmatrix} 130 \\ 130 \\ 142 \\ 144 \\ 167 \end{bmatrix}$	116	8
j = 150, 150, 112, 111, 107	1732	24
e = 0, 20, -2, 56, 63		
$\tilde{e} = 0 24 - 8 56 56$	225240	232
c = 0, 21, 0, 50, 50	241255	248
f = [130], 154, 134, 200, 223	anian	Zan

decodedx=dpcmdeco(encodedx, codebook, predictor);

Delta Modulation

Delta Modulation (DM), a much-simplified version of DPCM often used as a quick analog-to-digital converter.

The idea in DM is to use only a single quantized error value, either positive or negative. (1-bit coder)

$$\hat{f}_{n} = \tilde{f}_{n-1}$$

$$e_{n} = f_{n} - \hat{f}_{n} = f_{n} - \tilde{f}_{n-1}$$

$$\tilde{e}_{n} = \begin{cases} +k \text{ if } e_{n} > 0, \text{ where } k \text{ is a constant} \\ -k \text{ otherwise,} \end{cases}$$

$$\tilde{f}_{\rm n} = \hat{f}_n + \tilde{e}_{\rm n}$$

prediction simply involves a delay.

Delta Modulation

let's consider actual numbers. Suppose signal values are as follows: $\hat{f}_{i} = \tilde{f}_{i}$

f1 f2 f3 f4 10 11 13 15 $\hat{f}_{n} = \tilde{f}_{n-1}$ $e_{n} = f_{n} - \hat{f}_{n} = f_{n} - \tilde{f}_{n-1}$ $\tilde{e}_{n} = \begin{cases} +k \text{ if } e_{n} > 0, \text{ where } k \text{ is a constant} \\ -k \text{ otherwise,} \end{cases}$ $\tilde{f}_{n} = \hat{f}_{n} + \tilde{e}_{n}$

We also define an exact reconstructed value $\tilde{f}_1 = f_1 = 10$. using a step value k = 4

$$\hat{f}_2 = 10, e_2 = 11 - 10 = 1, \quad \tilde{e}_2 = 4, \quad \tilde{f}_2 = 10 + 4 = 14$$

 $\hat{f}_3 = 14, e_3 = 13 - 14 = -1, \quad \tilde{e}_3 = -4, \quad \tilde{f}_3 = 14 - 4 = 10$
 $\hat{f}_4 = 10, e_4 = 15 - 10 = 5, \quad \tilde{e}_4 = 4, \quad \tilde{f}_4 = 10 + 4 = 14$

Delta Modulation

