
Multimedia Systems
Part 20

Mahdi Vasighi
www.iasbs.ac.ir/~vasighi

Department of Computer Science and Information Technology,
Institute for Advanced Studies in Basic Sciences, Zanjan, Iran

Arithmetic Coding

• A widely used entropy coder.
• Variable length source coding technique

• Only problem is its speed due possibly complex
computations due to large symbol tables.

• Good compression ratio (better than Huffman
coding), entropy around the Shannon ideal value.

• Here we describe basic approach of Arithmetic
Coding.

Arithmetic Coding

The idea behind arithmetic coding is:
encode the entire message into a single real
number, n, (0.0  n < 1.0).

• Consider a probability line segment, [0. . . 1),
• Assign to every symbol a range in this interval
• Range is proportional to probability with position at

cumulative probability.

Once we have defined the ranges and the probability line:
• Start to encode symbols.
• Every symbol defines where the output real number lands

within the range.

Arithmetic Coding

Assume we have the following string: BACA
• A occurs with probability 0.5.
• B and C with probabilities 0.25.

Start by assigning each symbol to the probability range
[0. . . 1).
Sort symbols highest probability first:

The first symbol in our example stream is B

Symbol Range

A [0.0, 0.5)

B [0.5. 0.75)

C [0.75, 1.0)

Arithmetic Coding

The first symbol in our example stream is B [0.5. 0.75)
• Subdivide the range for the first symbol
For the second symbol (range = 0.25, low = 0.5, high = 0.75)

reapply the subdivision of our scale again to get for our third
symbol:(range = 0.125, low = 0.5, high = 0.625):

Symbol Range

BA [0.5, 0.625)

BB [0.625. 0.6875)

BC [0.6875, 0.75)

Symbol Range

BAA [0.5, 0.5625)

BAB [0.5625. 0.59375)

BAC [0.59375, 0.625)

Arithmetic Coding

Subdivide again:
(range = 0.03125, low = 0.59375, high = 0.625):

So the (unique) output code for BACA is any number in the range:

[0.59375, 0.60937)

This number is referred to as a tag.

Symbol Range

BACA [0.59375, 0.60937)

BACB [0.60937. 0.6171875)

BACC [0.6171875, 0.625)

Arithmetic Coding

Sym Range

A [0.0, 0.5)

B [0.5. 0.75)

C [0.75, 1.0)

0.0

1.0

A=.5

B=.25

C=.25

0.5

0.75

0.5

0.75

A=.5

B=.25

C=.25

0.625

0.6875

Sym Range

BA [0.5, 0.625)

BB [0.625. 0.6875)

BC [0.6875, 0.75)

0.5

0.625

A=.5

B=.25

C=.25

0.5625

0.59375

Sym Range

BAA [0.5, 0.5625)

BAB [0.5625. 0.59375)

BAC [0.59375, 0.625)

Sym Range

BACA [0.59375, 0.60937)

BACB [0.60937. 0.6171875)

BACC [0.6171875, 0.625)

0.59375

0.625

A=.5

B=.25

C=.25

0.60937

0.6171875

Arithmetic Coding

Suppose the alphabet is [A, B,C, D, E, F, $] with known probability
distribution.
$ is a special symbol used to terminate the message

We want to encode a string of symbols CAEE$

Arithmetic Coding

Suppose the alphabet is [A, B,C, D, E, F, $] with known probability
distribution. We want to encode a string of symbols CAEE$

low= low + range  Range_low(sym);
high= low + range  Range_high(sym);

Arithmetic Coding

range = PC × PA × PE × PE × P$

= 0.2 × 0.2 × 0.3 × 0.3 × 0.1
= 0.00036

BEGIN
low = 0.0; high = 1.0; range = 1.0;
initialize symbol;
while (symbol $= terminator)

{ get (symbol);
low = low + range * Range_low(symbol);
high = low + range * Range_high(symbol);
range = high - low; }

output a code so that low <= code < high;
END

[0.33184, 0.33220)

Arithmetic Coding

Binary fractional Decimal
0.1 0.5
0.01 0.25
0.001 0.125
0.0001 0.0625
0.00001 0.0313
0.000001 0.0156
0.0000001 0.0078
0.00000001 0.0039

0.01010101

2−2 + 2−4 + 2−6 + 2−8

= 0.33203125

range = PC × PA × PE × PE × P$

= 0.2 × 0.2 × 0.3 × 0.3 × 0.1
= 0.00036

[0.33184, 0.33220)

treat the whole message as one unit

Arithmetic Coding

In the worst case, the shortest codeword in arithmetic
coding will require k bits to encode a sequence of
symbols:

Arithmetic coding achieves better performance than
Huffman coding but it has some limitations:

• long sequences of symbols: a very small range. It requires very
high-precision numbers

• The encoder will not produce any output codeword until the
entire sequence is entered.

� = ����

1

�����
= ����

1

∏ ���

Binary Arithmetic Coding

Binary Arithmetic Coding deals with two symbols only,
0 and 1 and uses binary fractions.

Idea: Suppose alphabet was X, Y and consider stream:
XXY

Therefore: P(X) = 2/3, P(Y) = 1/3

For encoding length 2 messages, we can map all
possible messages to intervals in the range [0. . . 1):

To encode message, just send enough bits of a binary
fraction that uniquely specifies the interval.

Binary Arithmetic Coding

X
XX

XY

Y
YX

YY

Message 0

4/9

6/9

8/9

1

0

2/4

3/4

15/16

Codeword

0.0

0.1

0.11

0.111

Binary Arithmetic Coding

Similarly, we can map all
possible length 3 messages
to intervals range [0. . . 1)

-log2p bits to represent
interval of size p.

-Log2(1/27)=4.7549  5

Lempel-Ziv-Welch (LZW) Algorithm

• A very common compression technique.
• Used in GIF files (LZW), Adobe PDF file (LZW),
• Patented: LZW Patent expired in 2003/2004.

Basic idea/Example
Suppose we want to encode the Oxford Concise English
dictionary which contains about 159,000 entries.

Why not just transmit each word as an 18 bit number?

����159000 = 18 ����

Problem
• Too many bits per word
• Everyone needs a dictionary to decode back to English.
• Only works for English text.
Solution
• Find a way to build the dictionary adaptively.
• Original methods (LZ) due to Lempel and Ziv in 1977.
• Terry Welch improvement (1984), Patented LZW Algorithm

• LZW idea is that only the initial dictionary needs to
be transmitted to enable decoding:

• The decoder is able to build the rest of the table
from the encoded sequence.

Lempel-Ziv-Welch (LZW) Algorithm

BEGIN
s = next input character;
while not EOF

{ c = next input character;
if s + c exists in the dictionary

s = s + c;
else

{ output the code for s;
add string s + c to the dictionary
with a new code;
s = c; }

}
output the code for s;

END

Lempel-Ziv-Welch (LZW) Algorithm

Lempel-Ziv-Welch (LZW) Algorithm

An example of a stream containing only two alphabets:

BABAABAAA
Let us start with a very simple dictionary (string table)

STRING TABLEOUTPUT

stringindexrepresentingoutput code

A0

B1

Lempel-Ziv-Welch (LZW) Algorithm

STRING TABLEOUTPUT

stringindexrepresentingoutput code

A0

B1

BA2B1

BABAABAAA s = B A
c = A

Lempel-Ziv-Welch (LZW) Algorithm

STRING TABLEOUTPUT

stringindexrepresentingoutput code

A0

B1

BA2B1

AB3A0

BABAABAAA s = A  B
c = B

Lempel-Ziv-Welch (LZW) Algorithm

STRING TABLEOUTPUT

stringindexrepresentingoutput code

A0

B1

BA2B1

AB3A0

BAA4BA2

BABAABAAA s = BA A
c = A

Lempel-Ziv-Welch (LZW) Algorithm

STRING TABLEOUTPUT

stringindexrepresentingoutput code

A0

B1

BA2B1

AB3A0

BAA4BA2

ABA5AB3

BABAABAAA s = AB A
c = A

Lempel-Ziv-Welch (LZW) Algorithm

STRING TABLEOUTPUT

stringindexrepresentingoutput code

A0

B1

BA2B1

AB3A0

BAA4BA2

ABA5AB3

AA6A0

BABAABAAA s = A A
c = A

Lempel-Ziv-Welch (LZW) Algorithm

STRING TABLEOUTPUT

stringindexrepresentingoutput code

A0

B1

BA2B1

AB3A0

BAA4BA2

ABA5AB3

AA6A0

AA6

BABAABAAA s = AA
c = empty

Lempel-Ziv-Welch (LZW) Algorithm

The LZW decompressor creates the same string table during
decompression. decompress the output sequence of previous
example:

STRING TABLEENCODER OUTPUT

stringcodewordstring

B

BA2A

1 0 2 3 0

Lempel-Ziv-Welch (LZW) Algorithm

The LZW decompressor creates the same string table during
decompression. decompress the output sequence of previous
example:

STRING TABLEENCODER OUTPUT

stringcodewordstring

B

BA2A

AB3BA

1 0 2 3 0

Lempel-Ziv-Welch (LZW) Algorithm

The LZW decompressor creates the same string table during
decompression. decompress the output sequence of previous
example:

STRING TABLEENCODER OUTPUT

stringcodewordstring

B

BA2A

AB3BA

BAA4AB

1 0 2 3 0

Lempel-Ziv-Welch (LZW) Algorithm

The LZW decompressor creates the same string table during
decompression. decompress the output sequence of previous
example:

STRING TABLEENCODER OUTPUT

stringcodewordstring

B

BA2A

AB3BA

BAA4AB

ABA5A

1 0 2 3 0

